Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Data pre-processing: build vocabularies and binarize training data. | |
""" | |
import logging | |
import os | |
import shutil | |
import sys | |
from collections import Counter | |
from itertools import zip_longest | |
from multiprocessing import Pool | |
from fairseq import options, tasks, utils | |
from fairseq.binarizer import Binarizer | |
from fairseq.data import indexed_dataset | |
from fairseq.file_chunker_utils import find_offsets | |
logging.basicConfig( | |
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", | |
datefmt="%Y-%m-%d %H:%M:%S", | |
level=os.environ.get("LOGLEVEL", "INFO").upper(), | |
stream=sys.stdout, | |
) | |
logger = logging.getLogger("fairseq_cli.preprocess") | |
def main(args): | |
utils.import_user_module(args) | |
os.makedirs(args.destdir, exist_ok=True) | |
logger.addHandler( | |
logging.FileHandler( | |
filename=os.path.join(args.destdir, "preprocess.log"), | |
) | |
) | |
logger.info(args) | |
assert args.dataset_impl != "huffman", "preprocessing.py doesn't support Huffman yet, use HuffmanCodeBuilder directly." | |
task = tasks.get_task(args.task) | |
def train_path(lang): | |
return "{}{}".format(args.trainpref, ("." + lang) if lang else "") | |
def file_name(prefix, lang): | |
fname = prefix | |
if lang is not None: | |
fname += ".{lang}".format(lang=lang) | |
return fname | |
def dest_path(prefix, lang): | |
return os.path.join(args.destdir, file_name(prefix, lang)) | |
def dict_path(lang): | |
return dest_path("dict", lang) + ".txt" | |
def build_dictionary(filenames, src=False, tgt=False): | |
assert src ^ tgt | |
return task.build_dictionary( | |
filenames, | |
workers=args.workers, | |
threshold=args.thresholdsrc if src else args.thresholdtgt, | |
nwords=args.nwordssrc if src else args.nwordstgt, | |
padding_factor=args.padding_factor, | |
) | |
target = not args.only_source | |
if not args.srcdict and os.path.exists(dict_path(args.source_lang)): | |
raise FileExistsError(dict_path(args.source_lang)) | |
if target and not args.tgtdict and os.path.exists(dict_path(args.target_lang)): | |
raise FileExistsError(dict_path(args.target_lang)) | |
if args.joined_dictionary: | |
assert ( | |
not args.srcdict or not args.tgtdict | |
), "cannot use both --srcdict and --tgtdict with --joined-dictionary" | |
if args.srcdict: | |
src_dict = task.load_dictionary(args.srcdict) | |
elif args.tgtdict: | |
src_dict = task.load_dictionary(args.tgtdict) | |
else: | |
assert ( | |
args.trainpref | |
), "--trainpref must be set if --srcdict is not specified" | |
src_dict = build_dictionary( | |
{train_path(lang) for lang in [args.source_lang, args.target_lang]}, | |
src=True, | |
) | |
tgt_dict = src_dict | |
else: | |
if args.srcdict: | |
src_dict = task.load_dictionary(args.srcdict) | |
else: | |
assert ( | |
args.trainpref | |
), "--trainpref must be set if --srcdict is not specified" | |
src_dict = build_dictionary([train_path(args.source_lang)], src=True) | |
if target: | |
if args.tgtdict: | |
tgt_dict = task.load_dictionary(args.tgtdict) | |
else: | |
assert ( | |
args.trainpref | |
), "--trainpref must be set if --tgtdict is not specified" | |
tgt_dict = build_dictionary([train_path(args.target_lang)], tgt=True) | |
else: | |
tgt_dict = None | |
src_dict.save(dict_path(args.source_lang)) | |
if target and tgt_dict is not None: | |
tgt_dict.save(dict_path(args.target_lang)) | |
if args.dict_only: | |
return | |
def make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers): | |
logger.info("[{}] Dictionary: {} types".format(lang, len(vocab))) | |
n_seq_tok = [0, 0] | |
replaced = Counter() | |
def merge_result(worker_result): | |
replaced.update(worker_result["replaced"]) | |
n_seq_tok[0] += worker_result["nseq"] | |
n_seq_tok[1] += worker_result["ntok"] | |
input_file = "{}{}".format( | |
input_prefix, ("." + lang) if lang is not None else "" | |
) | |
offsets = find_offsets(input_file, num_workers) | |
(first_chunk, *more_chunks) = zip(offsets, offsets[1:]) | |
pool = None | |
if num_workers > 1: | |
pool = Pool(processes=num_workers - 1) | |
for worker_id, (start_offset, end_offset) in enumerate( | |
more_chunks, start=1 | |
): | |
prefix = "{}{}".format(output_prefix, worker_id) | |
pool.apply_async( | |
binarize, | |
( | |
args, | |
input_file, | |
vocab, | |
prefix, | |
lang, | |
start_offset, | |
end_offset, | |
), | |
callback=merge_result, | |
) | |
pool.close() | |
ds = indexed_dataset.make_builder( | |
dataset_dest_file(args, output_prefix, lang, "bin"), | |
impl=args.dataset_impl, | |
vocab_size=len(vocab), | |
) | |
merge_result( | |
Binarizer.binarize( | |
input_file, | |
vocab, | |
lambda t: ds.add_item(t), | |
offset=first_chunk[0], | |
end=first_chunk[1], | |
) | |
) | |
if num_workers > 1: | |
pool.join() | |
for worker_id in range(1, num_workers): | |
prefix = "{}{}".format(output_prefix, worker_id) | |
temp_file_path = dataset_dest_prefix(args, prefix, lang) | |
ds.merge_file_(temp_file_path) | |
os.remove(indexed_dataset.data_file_path(temp_file_path)) | |
os.remove(indexed_dataset.index_file_path(temp_file_path)) | |
ds.finalize(dataset_dest_file(args, output_prefix, lang, "idx")) | |
logger.info( | |
"[{}] {}: {} sents, {} tokens, {:.3}% replaced by {}".format( | |
lang, | |
input_file, | |
n_seq_tok[0], | |
n_seq_tok[1], | |
100 * sum(replaced.values()) / n_seq_tok[1], | |
vocab.unk_word, | |
) | |
) | |
def make_binary_alignment_dataset(input_prefix, output_prefix, num_workers): | |
nseq = [0] | |
def merge_result(worker_result): | |
nseq[0] += worker_result["nseq"] | |
input_file = input_prefix | |
offsets = find_offsets(input_file, num_workers) | |
(first_chunk, *more_chunks) = zip(offsets, offsets[1:]) | |
pool = None | |
if num_workers > 1: | |
pool = Pool(processes=num_workers - 1) | |
for worker_id, (start_offset, end_offset) in enumerate( | |
more_chunks, start=1 | |
): | |
prefix = "{}{}".format(output_prefix, worker_id) | |
pool.apply_async( | |
binarize_alignments, | |
( | |
args, | |
input_file, | |
utils.parse_alignment, | |
prefix, | |
start_offset, | |
end_offset, | |
), | |
callback=merge_result, | |
) | |
pool.close() | |
ds = indexed_dataset.make_builder( | |
dataset_dest_file(args, output_prefix, None, "bin"), impl=args.dataset_impl | |
) | |
merge_result( | |
Binarizer.binarize_alignments( | |
input_file, | |
utils.parse_alignment, | |
lambda t: ds.add_item(t), | |
offset=first_chunk[0], | |
end=first_chunk[1], | |
) | |
) | |
if num_workers > 1: | |
pool.join() | |
for worker_id in range(1, num_workers): | |
prefix = "{}{}".format(output_prefix, worker_id) | |
temp_file_path = dataset_dest_prefix(args, prefix, None) | |
ds.merge_file_(temp_file_path) | |
os.remove(indexed_dataset.data_file_path(temp_file_path)) | |
os.remove(indexed_dataset.index_file_path(temp_file_path)) | |
ds.finalize(dataset_dest_file(args, output_prefix, None, "idx")) | |
logger.info("[alignments] {}: parsed {} alignments".format(input_file, nseq[0])) | |
def make_dataset(vocab, input_prefix, output_prefix, lang, num_workers=1): | |
if args.dataset_impl == "raw": | |
# Copy original text file to destination folder | |
output_text_file = dest_path( | |
output_prefix + ".{}-{}".format(args.source_lang, args.target_lang), | |
lang, | |
) | |
shutil.copyfile(file_name(input_prefix, lang), output_text_file) | |
else: | |
make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers) | |
def make_all(lang, vocab): | |
if args.trainpref: | |
make_dataset(vocab, args.trainpref, "train", lang, num_workers=args.workers) | |
if args.validpref: | |
for k, validpref in enumerate(args.validpref.split(",")): | |
outprefix = "valid{}".format(k) if k > 0 else "valid" | |
make_dataset( | |
vocab, validpref, outprefix, lang, num_workers=args.workers | |
) | |
if args.testpref: | |
for k, testpref in enumerate(args.testpref.split(",")): | |
outprefix = "test{}".format(k) if k > 0 else "test" | |
make_dataset(vocab, testpref, outprefix, lang, num_workers=args.workers) | |
def make_all_alignments(): | |
if args.trainpref and os.path.exists(args.trainpref + "." + args.align_suffix): | |
make_binary_alignment_dataset( | |
args.trainpref + "." + args.align_suffix, | |
"train.align", | |
num_workers=args.workers, | |
) | |
if args.validpref and os.path.exists(args.validpref + "." + args.align_suffix): | |
make_binary_alignment_dataset( | |
args.validpref + "." + args.align_suffix, | |
"valid.align", | |
num_workers=args.workers, | |
) | |
if args.testpref and os.path.exists(args.testpref + "." + args.align_suffix): | |
make_binary_alignment_dataset( | |
args.testpref + "." + args.align_suffix, | |
"test.align", | |
num_workers=args.workers, | |
) | |
make_all(args.source_lang, src_dict) | |
if target: | |
make_all(args.target_lang, tgt_dict) | |
if args.align_suffix: | |
make_all_alignments() | |
logger.info("Wrote preprocessed data to {}".format(args.destdir)) | |
if args.alignfile: | |
assert args.trainpref, "--trainpref must be set if --alignfile is specified" | |
src_file_name = train_path(args.source_lang) | |
tgt_file_name = train_path(args.target_lang) | |
freq_map = {} | |
with open(args.alignfile, "r", encoding="utf-8") as align_file: | |
with open(src_file_name, "r", encoding="utf-8") as src_file: | |
with open(tgt_file_name, "r", encoding="utf-8") as tgt_file: | |
for a, s, t in zip_longest(align_file, src_file, tgt_file): | |
si = src_dict.encode_line(s, add_if_not_exist=False) | |
ti = tgt_dict.encode_line(t, add_if_not_exist=False) | |
ai = list(map(lambda x: tuple(x.split("-")), a.split())) | |
for sai, tai in ai: | |
srcidx = si[int(sai)] | |
tgtidx = ti[int(tai)] | |
if srcidx != src_dict.unk() and tgtidx != tgt_dict.unk(): | |
assert srcidx != src_dict.pad() | |
assert srcidx != src_dict.eos() | |
assert tgtidx != tgt_dict.pad() | |
assert tgtidx != tgt_dict.eos() | |
if srcidx not in freq_map: | |
freq_map[srcidx] = {} | |
if tgtidx not in freq_map[srcidx]: | |
freq_map[srcidx][tgtidx] = 1 | |
else: | |
freq_map[srcidx][tgtidx] += 1 | |
align_dict = {} | |
for srcidx in freq_map.keys(): | |
align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get) | |
with open( | |
os.path.join( | |
args.destdir, | |
"alignment.{}-{}.txt".format(args.source_lang, args.target_lang), | |
), | |
"w", | |
encoding="utf-8", | |
) as f: | |
for k, v in align_dict.items(): | |
print("{} {}".format(src_dict[k], tgt_dict[v]), file=f) | |
def binarize(args, filename, vocab, output_prefix, lang, offset, end, append_eos=True): | |
ds = indexed_dataset.make_builder( | |
dataset_dest_file(args, output_prefix, lang, "bin"), | |
impl=args.dataset_impl, | |
vocab_size=len(vocab), | |
) | |
def consumer(tensor): | |
ds.add_item(tensor) | |
res = Binarizer.binarize( | |
filename, vocab, consumer, append_eos=append_eos, offset=offset, end=end | |
) | |
ds.finalize(dataset_dest_file(args, output_prefix, lang, "idx")) | |
return res | |
def binarize_alignments(args, filename, parse_alignment, output_prefix, offset, end): | |
ds = indexed_dataset.make_builder( | |
dataset_dest_file(args, output_prefix, None, "bin"), | |
impl=args.dataset_impl, | |
vocab_size=None, | |
) | |
def consumer(tensor): | |
ds.add_item(tensor) | |
res = Binarizer.binarize_alignments( | |
filename, parse_alignment, consumer, offset=offset, end=end | |
) | |
ds.finalize(dataset_dest_file(args, output_prefix, None, "idx")) | |
return res | |
def dataset_dest_prefix(args, output_prefix, lang): | |
base = "{}/{}".format(args.destdir, output_prefix) | |
if lang is not None: | |
lang_part = ".{}-{}.{}".format(args.source_lang, args.target_lang, lang) | |
elif args.only_source: | |
lang_part = "" | |
else: | |
lang_part = ".{}-{}".format(args.source_lang, args.target_lang) | |
return "{}{}".format(base, lang_part) | |
def dataset_dest_file(args, output_prefix, lang, extension): | |
base = dataset_dest_prefix(args, output_prefix, lang) | |
return "{}.{}".format(base, extension) | |
def cli_main(): | |
parser = options.get_preprocessing_parser() | |
args = parser.parse_args() | |
main(args) | |
if __name__ == "__main__": | |
cli_main() | |