import gradio as gr from transformers import BarkModel, AutoProcessor import torch from scipy.io.wavfile import write as write_wav import os device = "cpu" model = BarkModel.from_pretrained("suno/bark-small").to(device) processor = AutoProcessor.from_pretrained("suno/bark") def generate_audio(text): file_name = "output_file_name.wav" inputs = processor(text) audio_array = model.generate(**inputs) audio_array = audio_array.cpu().numpy().squeeze() sample_rate = model.generation_config.sample_rate write_wav(file_name,sample_rate,audio_array) return file_name iface = gr.Interface(fn=generate_audio,inputs="text",outputs="audio") iface.launch()