Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
st.set_page_config(page_title="Common NLP Tasks") | |
st.title("Common NLP Tasks") | |
st.subheader("Use the menu on the left to select a NLP task (click on > if closed).") | |
expander = st.sidebar.expander("About") | |
expander.write("This web app allows you to perform common Natural Language Processing tasks, select a task below to get started.") | |
st.sidebar.header("What will you like to do?") | |
option = st.sidebar.radio("", ["Extractive question answering", "Text summarization", "Text generation"]) | |
def question_model(): | |
model_name = "deepset/roberta-base-squad2" | |
question_answerer = pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering") | |
return question_answerer | |
def summarization_model(): | |
model_name = "google/pegasus-xsum" | |
summarizer = pipeline(model=model_name, tokenizer=model_name, task="summarization") | |
return summarizer | |
def generation_model(): | |
model_name = "distilgpt2" | |
generator = pipeline(model=model_name, tokenizer=model_name, task="text-generation") | |
return generator | |
if option == "Extractive question answering": | |
st.markdown("<h2 style='text-align: center; color:grey;'>Extract answer from text</h2>", unsafe_allow_html=True) | |
source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"]) | |
sample_question = "What did the shepherd boy do to amuse himself?" | |
if source == "I want to input some text": | |
with open("sample.txt", "r") as text_file: | |
sample_text = text_file.read() | |
context = st.text_area("Use the example below or input your own text in English (10,000 characters max)", value=sample_text, max_chars=10000, height=330) | |
question = st.text_input(label="Use the question below or enter your own question", value=sample_question) | |
button = st.button("Get answer") | |
if button: | |
with st.spinner(text="Loading question model..."): | |
question_answerer = question_model() | |
with st.spinner(text="Getting answer..."): | |
answer = question_answerer(context=context, question=question) | |
answer = answer["answer"] | |
html_str = f"<p style='color:red;'>{answer}</p>" | |
st.markdown(html_str, unsafe_allow_html=True) | |
elif source == "I want to upload a file": | |
uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"]) | |
if uploaded_file is not None: | |
raw_text = str(uploaded_file.read(),"utf-8") | |
context = st.text_area("", value=raw_text, height=330) | |
question = st.text_input(label="Enter your question", value=sample_question) | |
button = st.button("Get answer") | |
if button: | |
with st.spinner(text="Loading summarization model..."): | |
question_answerer = question_model() | |
with st.spinner(text="Getting answer..."): | |
answer = question_answerer(context=context, question=question) | |
answer = answer["answer"] | |
st.text(answer) | |
elif option == "Text summarization": | |
st.markdown("<h2 style='text-align: center; color:grey;'>Summarize text</h2>", unsafe_allow_html=True) | |
source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"]) | |
if source == "I want to input some text": | |
with open("sample.txt", "r") as text_file: | |
sample_text = text_file.read() | |
text = st.text_area("Input a text in English (10,000 characters max) or use the example below", value=sample_text, max_chars=10000, height=330) | |
button = st.button("Get summary") | |
if button: | |
with st.spinner(text="Loading summarization model..."): | |
summarizer = summarization_model() | |
with st.spinner(text="Summarizing text..."): | |
summary = summarizer(text, max_length=130, min_length=30) | |
st.write(summary[0]["summary_text"]) | |
elif source == "I want to upload a file": | |
uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"]) | |
if uploaded_file is not None: | |
raw_text = str(uploaded_file.read(),"utf-8") | |
text = st.text_area("", value=raw_text, height=330) | |
button = st.button("Get summary") | |
if button: | |
with st.spinner(text="Loading summarization model..."): | |
summarizer = summarization_model() | |
with st.spinner(text="Summarizing text..."): | |
summary = summarizer(text, max_length=130, min_length=30) | |
st.write(summary[0]["summary_text"]) | |
elif option == "Text generation": | |
st.markdown("<h2 style='text-align: center; color:grey;'>Generate text</h2>", unsafe_allow_html=True) | |
text = st.text_input(label="Enter one line of text and let the NLP model generate the rest for you") | |
button = st.button("Generate text") | |
if button: | |
with st.spinner(text="Loading text generation model..."): | |
generator = generation_model() | |
with st.spinner(text="Generating text..."): | |
generated_text = generator(text, max_length=50) | |
st.write(generated_text[0]["generated_text"]) |