File size: 4,923 Bytes
a82e053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-

# Copyright 2019 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

"""STFT-based Loss modules."""

import torch
import torch.nn.functional as F


def stft(x, fft_size, hop_size, win_length, window):
    """Perform STFT and convert to magnitude spectrogram.
    Args:
        x (Tensor): Input signal tensor (B, T).
        fft_size (int): FFT size.
        hop_size (int): Hop size.
        win_length (int): Window length.
        window (str): Window function type.
    Returns:
        Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
    """
    x_stft = torch.stft(x, fft_size, hop_size, win_length, window.to(x.device))
    real = x_stft[..., 0]
    imag = x_stft[..., 1]

    # NOTE(kan-bayashi): clamp is needed to avoid nan or inf
    return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1)


class SpectralConvergengeLoss(torch.nn.Module):
    """Spectral convergence loss module."""

    def __init__(self):
        """Initilize spectral convergence loss module."""
        super(SpectralConvergengeLoss, self).__init__()

    def forward(self, x_mag, y_mag):
        """Calculate forward propagation.
        Args:
            x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
            y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
        Returns:
            Tensor: Spectral convergence loss value.
        """
        return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro")


class LogSTFTMagnitudeLoss(torch.nn.Module):
    """Log STFT magnitude loss module."""

    def __init__(self):
        """Initilize los STFT magnitude loss module."""
        super(LogSTFTMagnitudeLoss, self).__init__()

    def forward(self, x_mag, y_mag):
        """Calculate forward propagation.
        Args:
            x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
            y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
        Returns:
            Tensor: Log STFT magnitude loss value.
        """
        return F.l1_loss(torch.log(y_mag), torch.log(x_mag))


class STFTLoss(torch.nn.Module):
    """STFT loss module."""

    def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window"):
        """Initialize STFT loss module."""
        super(STFTLoss, self).__init__()
        self.fft_size = fft_size
        self.shift_size = shift_size
        self.win_length = win_length
        self.window = getattr(torch, window)(win_length)
        self.spectral_convergenge_loss = SpectralConvergengeLoss()
        self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()

    def forward(self, x, y):
        """Calculate forward propagation.
        Args:
            x (Tensor): Predicted signal (B, T).
            y (Tensor): Groundtruth signal (B, T).
        Returns:
            Tensor: Spectral convergence loss value.
            Tensor: Log STFT magnitude loss value.
        """
        x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window)
        y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window)
        sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
        mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)

        return sc_loss, mag_loss


class MultiResolutionSTFTLoss(torch.nn.Module):
    """Multi resolution STFT loss module."""

    def __init__(self,
                 fft_sizes=[1024, 2048, 512],
                 hop_sizes=[120, 240, 50],
                 win_lengths=[600, 1200, 240],
                 window="hann_window"):
        """Initialize Multi resolution STFT loss module.
        Args:
            fft_sizes (list): List of FFT sizes.
            hop_sizes (list): List of hop sizes.
            win_lengths (list): List of window lengths.
            window (str): Window function type.
        """
        super(MultiResolutionSTFTLoss, self).__init__()
        assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
        self.stft_losses = torch.nn.ModuleList()
        for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
            self.stft_losses += [STFTLoss(fs, ss, wl, window)]

    def forward(self, x, y):
        """Calculate forward propagation.
        Args:
            x (Tensor): Predicted signal (B, T).
            y (Tensor): Groundtruth signal (B, T).
        Returns:
            Tensor: Multi resolution spectral convergence loss value.
            Tensor: Multi resolution log STFT magnitude loss value.
        """
        sc_loss = 0.0
        mag_loss = 0.0
        for f in self.stft_losses:
            sc_l, mag_l = f(x, y)
            sc_loss += sc_l
            mag_loss += mag_l
        sc_loss /= len(self.stft_losses)
        mag_loss /= len(self.stft_losses)

        return sc_loss, mag_loss