Spaces:
Running
Running
ORI-Muchim
commited on
Update mel_processing.py
Browse files- mel_processing.py +31 -4
mel_processing.py
CHANGED
@@ -1,5 +1,17 @@
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import torch.utils.data
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from librosa.filters import mel as librosa_mel_fn
|
4 |
|
5 |
MAX_WAV_VALUE = 32768.0
|
@@ -52,9 +64,13 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
|
52 |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
53 |
y = y.squeeze(1)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
59 |
return spec
|
60 |
|
@@ -90,8 +106,19 @@ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size,
|
|
90 |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
91 |
y = y.squeeze(1)
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
97 |
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
from packaging import version
|
4 |
+
import random
|
5 |
import torch
|
6 |
+
from torch import nn
|
7 |
+
import torch.nn.functional as F
|
8 |
import torch.utils.data
|
9 |
+
import numpy as np
|
10 |
+
import librosa
|
11 |
+
import librosa.util as librosa_util
|
12 |
+
from librosa.util import normalize, pad_center, tiny
|
13 |
+
from scipy.signal import get_window
|
14 |
+
from scipy.io.wavfile import read
|
15 |
from librosa.filters import mel as librosa_mel_fn
|
16 |
|
17 |
MAX_WAV_VALUE = 32768.0
|
|
|
64 |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
65 |
y = y.squeeze(1)
|
66 |
|
67 |
+
if version.parse(torch.__version__) >= version.parse("2"):
|
68 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
69 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
70 |
+
else:
|
71 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
72 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
73 |
+
|
74 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
75 |
return spec
|
76 |
|
|
|
106 |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
107 |
y = y.squeeze(1)
|
108 |
|
109 |
+
if version.parse(torch.__version__) >= version.parse("2"):
|
110 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
111 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
112 |
+
else:
|
113 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
114 |
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
115 |
+
'''
|
116 |
+
#- reserve : from https://github.com/jaywalnut310/vits/issues/15#issuecomment-1084148441
|
117 |
+
with autocast(enabled=False):
|
118 |
+
y = y.float()
|
119 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
120 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
121 |
+
'''
|
122 |
|
123 |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
124 |
|