Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import BertTokenizer, BertModel
|
6 |
+
import argparse
|
7 |
+
import numpy as np
|
8 |
+
import os
|
9 |
+
import time # Import the time module
|
10 |
+
|
11 |
+
# Import the model architecture from train.py
|
12 |
+
from train import CVAE, TextEncoder, LATENT_DIM, HIDDEN_DIM
|
13 |
+
|
14 |
+
# Initialize the BERT tokenizer
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
16 |
+
|
17 |
+
def clean_image(image, threshold=0.75):
|
18 |
+
"""
|
19 |
+
Clean up the image by setting pixels with opacity <= threshold to 0% opacity
|
20 |
+
and pixels above the threshold to 100% visibility.
|
21 |
+
"""
|
22 |
+
np_image = np.array(image)
|
23 |
+
alpha_channel = np_image[:, :, 3]
|
24 |
+
alpha_channel[alpha_channel <= int(threshold * 255)] = 0
|
25 |
+
alpha_channel[alpha_channel > int(threshold * 255)] = 255 # Set to 100% visibility
|
26 |
+
return Image.fromarray(np_image)
|
27 |
+
|
28 |
+
def generate_image(model, text_prompt, device, input_image=None, img_control=0.5):
|
29 |
+
# Encode text prompt using BERT tokenizer
|
30 |
+
encoded_input = tokenizer(text_prompt, padding=True, truncation=True, return_tensors="pt")
|
31 |
+
input_ids = encoded_input['input_ids'].to(device)
|
32 |
+
attention_mask = encoded_input['attention_mask'].to(device)
|
33 |
+
|
34 |
+
# Generate text encoding
|
35 |
+
with torch.no_grad():
|
36 |
+
text_encoding = model.text_encoder(input_ids, attention_mask)
|
37 |
+
|
38 |
+
# Sample from the latent space
|
39 |
+
z = torch.randn(1, LATENT_DIM).to(device)
|
40 |
+
|
41 |
+
# Generate image
|
42 |
+
with torch.no_grad():
|
43 |
+
generated_image = model.decode(z, text_encoding)
|
44 |
+
|
45 |
+
if input_image is not None:
|
46 |
+
input_image = input_image.convert("RGBA").resize((16, 16), resample=Image.NEAREST)
|
47 |
+
input_image = transforms.ToTensor()(input_image).unsqueeze(0).to(device)
|
48 |
+
generated_image = img_control * input_image + (1 - img_control) * generated_image
|
49 |
+
|
50 |
+
# Convert the generated tensor to a PIL Image
|
51 |
+
generated_image = generated_image.squeeze(0).cpu()
|
52 |
+
generated_image = (generated_image + 1) / 2 # Rescale from [-1, 1] to [0, 1]
|
53 |
+
generated_image = generated_image.clamp(0, 1)
|
54 |
+
generated_image = transforms.ToPILImage()(generated_image)
|
55 |
+
|
56 |
+
return generated_image
|
57 |
+
|
58 |
+
def main():
|
59 |
+
parser = argparse.ArgumentParser(description="Generate an image from a text prompt using the trained CVAE model(s).")
|
60 |
+
parser.add_argument("--prompt", type=str, help="Text prompt for image generation")
|
61 |
+
parser.add_argument("--prompt_file", type=str, help="File containing prompts, one per line")
|
62 |
+
parser.add_argument("--output", type=str, default="generated_images", help="Output directory or file for generated images")
|
63 |
+
parser.add_argument("--model_paths", type=str, nargs='*', help="Paths to the trained model(s)")
|
64 |
+
parser.add_argument("--model_path", type=str, help="Path to a single trained model")
|
65 |
+
parser.add_argument("--clean", action="store_true", help="Clean up the image by removing low opacity pixels")
|
66 |
+
parser.add_argument("--size", type=int, default=16, help="Size of the generated image")
|
67 |
+
parser.add_argument("--input_image", type=str, help="Path to the input image for img2img generation")
|
68 |
+
parser.add_argument("--img_control", type=float, default=0.5, help="Control how much the input image influences the output (0 to 1)")
|
69 |
+
args = parser.parse_args()
|
70 |
+
|
71 |
+
if not args.prompt and not args.prompt_file:
|
72 |
+
parser.error("Either --prompt or --prompt_file must be provided")
|
73 |
+
|
74 |
+
if args.model_paths and args.model_path:
|
75 |
+
parser.error("Specify either --model_paths or --model_path, not both")
|
76 |
+
|
77 |
+
model_paths = args.model_paths if args.model_paths else [args.model_path]
|
78 |
+
|
79 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
80 |
+
|
81 |
+
# Check if --output is a file or directory
|
82 |
+
is_folder_output = os.path.isdir(args.output)
|
83 |
+
|
84 |
+
if is_folder_output:
|
85 |
+
# Ensure output directory exists if it's not a file
|
86 |
+
os.makedirs(args.output, exist_ok=True)
|
87 |
+
|
88 |
+
# Load input image if provided
|
89 |
+
input_image = None
|
90 |
+
if args.input_image:
|
91 |
+
input_image = Image.open(args.input_image).convert("RGBA")
|
92 |
+
|
93 |
+
# Process single prompt or batch of prompts
|
94 |
+
if args.prompt:
|
95 |
+
prompts = [args.prompt]
|
96 |
+
else:
|
97 |
+
with open(args.prompt_file, 'r') as f:
|
98 |
+
prompts = [line.strip() for line in f if line.strip()]
|
99 |
+
|
100 |
+
for model_path in model_paths:
|
101 |
+
# Initialize model
|
102 |
+
text_encoder = TextEncoder(hidden_size=HIDDEN_DIM, output_size=HIDDEN_DIM)
|
103 |
+
model = CVAE(text_encoder).to(device)
|
104 |
+
|
105 |
+
# Load the trained model
|
106 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
107 |
+
model.eval()
|
108 |
+
|
109 |
+
model_name = os.path.splitext(os.path.basename(model_path))[0]
|
110 |
+
|
111 |
+
for i, prompt in enumerate(prompts):
|
112 |
+
start_time = time.time() # Start timing the generation
|
113 |
+
|
114 |
+
# Generate image from prompt
|
115 |
+
generated_image = generate_image(model, prompt, device, input_image, args.img_control)
|
116 |
+
|
117 |
+
# End timing the generation
|
118 |
+
end_time = time.time()
|
119 |
+
generation_time = end_time - start_time # Calculate the generation time
|
120 |
+
|
121 |
+
# Clean up the image if the flag is set
|
122 |
+
if args.clean:
|
123 |
+
generated_image = clean_image(generated_image)
|
124 |
+
|
125 |
+
# Resize the generated image
|
126 |
+
generated_image = generated_image.resize((args.size, args.size), resample=Image.NEAREST)
|
127 |
+
|
128 |
+
if not is_folder_output:
|
129 |
+
# Save the generated image to the specified file
|
130 |
+
output_file = args.output
|
131 |
+
else:
|
132 |
+
# Save the generated image to the output directory
|
133 |
+
output_file = os.path.join(args.output, f"{model_name}_{prompt}_{i:03d}.png")
|
134 |
+
|
135 |
+
generated_image.save(output_file)
|
136 |
+
print(f"Generated image for prompt '{prompt}' using model '{model_name}' saved as {output_file}")
|
137 |
+
print(f"Generation time: {generation_time:.10f} seconds") # Print the generation time
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
main()
|