Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import Dataset, DataLoader
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import subprocess
|
10 |
+
from transformers import BertTokenizer, BertModel
|
11 |
+
import wandb
|
12 |
+
|
13 |
+
# Hyperparameters
|
14 |
+
LATENT_DIM = 128
|
15 |
+
HIDDEN_DIM = 256
|
16 |
+
|
17 |
+
# Custom dataset
|
18 |
+
class Text2ImageDataset(Dataset):
|
19 |
+
def __init__(self, image_dir, metadata_file):
|
20 |
+
self.image_dir = image_dir
|
21 |
+
with open(metadata_file, 'r') as f:
|
22 |
+
self.metadata = json.load(f)
|
23 |
+
self.transform = transforms.Compose([
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize((0.5, 0.5, 0.5, 0.5), (0.5, 0.5, 0.5, 0.5))
|
26 |
+
])
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.metadata)
|
30 |
+
|
31 |
+
def __getitem__(self, idx):
|
32 |
+
item = self.metadata[idx]
|
33 |
+
image_path = os.path.join(self.image_dir, item['file_name'])
|
34 |
+
|
35 |
+
try:
|
36 |
+
image = Image.open(image_path).convert('RGBA')
|
37 |
+
except FileNotFoundError:
|
38 |
+
print(f"Image not found: {image_path}")
|
39 |
+
return None, None
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Error loading image {image_path}: {e}")
|
42 |
+
return None, None
|
43 |
+
|
44 |
+
image = self.transform(image)
|
45 |
+
prompt = str(item['description'])
|
46 |
+
return image, prompt
|
47 |
+
|
48 |
+
# Text encoder
|
49 |
+
class TextEncoder(nn.Module):
|
50 |
+
def __init__(self, hidden_size, output_size):
|
51 |
+
super(TextEncoder, self).__init__()
|
52 |
+
self.bert = BertModel.from_pretrained('bert-base-uncased')
|
53 |
+
self.fc = nn.Linear(self.bert.config.hidden_size, output_size)
|
54 |
+
|
55 |
+
def forward(self, input_ids, attention_mask):
|
56 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
57 |
+
return self.fc(outputs.last_hidden_state[:, 0, :])
|
58 |
+
|
59 |
+
# CVAE model
|
60 |
+
class CVAE(nn.Module):
|
61 |
+
def __init__(self, text_encoder):
|
62 |
+
super(CVAE, self).__init__()
|
63 |
+
self.text_encoder = text_encoder
|
64 |
+
|
65 |
+
# Encoder
|
66 |
+
self.encoder = nn.Sequential(
|
67 |
+
nn.Conv2d(4, 32, 3, stride=1, padding=1),
|
68 |
+
nn.ReLU(),
|
69 |
+
nn.Conv2d(32, 64, 3, stride=2, padding=1),
|
70 |
+
nn.ReLU(),
|
71 |
+
nn.Conv2d(64, 128, 3, stride=2, padding=1),
|
72 |
+
nn.ReLU(),
|
73 |
+
nn.Flatten(),
|
74 |
+
nn.Linear(128 * 4 * 4, HIDDEN_DIM)
|
75 |
+
)
|
76 |
+
|
77 |
+
self.fc_mu = nn.Linear(HIDDEN_DIM + HIDDEN_DIM, LATENT_DIM)
|
78 |
+
self.fc_logvar = nn.Linear(HIDDEN_DIM + HIDDEN_DIM, LATENT_DIM)
|
79 |
+
|
80 |
+
# Decoder
|
81 |
+
self.decoder_input = nn.Linear(LATENT_DIM + HIDDEN_DIM, 128 * 4 * 4)
|
82 |
+
self.decoder = nn.Sequential(
|
83 |
+
nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1),
|
84 |
+
nn.ReLU(),
|
85 |
+
nn.ConvTranspose2d(64, 32, 3, stride=2, padding=1, output_padding=1),
|
86 |
+
nn.ReLU(),
|
87 |
+
nn.Conv2d(32, 4, 3, stride=1, padding=1),
|
88 |
+
nn.Tanh()
|
89 |
+
)
|
90 |
+
|
91 |
+
def encode(self, x, c):
|
92 |
+
x = self.encoder(x)
|
93 |
+
x = torch.cat([x, c], dim=1)
|
94 |
+
mu = self.fc_mu(x)
|
95 |
+
logvar = self.fc_logvar(x)
|
96 |
+
return mu, logvar
|
97 |
+
|
98 |
+
def decode(self, z, c):
|
99 |
+
z = torch.cat([z, c], dim=1)
|
100 |
+
x = self.decoder_input(z)
|
101 |
+
x = x.view(-1, 128, 4, 4)
|
102 |
+
return self.decoder(x)
|
103 |
+
|
104 |
+
def reparameterize(self, mu, logvar):
|
105 |
+
std = torch.exp(0.5 * logvar)
|
106 |
+
eps = torch.randn_like(std)
|
107 |
+
return mu + eps * std
|
108 |
+
|
109 |
+
def forward(self, x, c):
|
110 |
+
mu, logvar = self.encode(x, c)
|
111 |
+
z = self.reparameterize(mu, logvar)
|
112 |
+
return self.decode(z, c), mu, logvar
|
113 |
+
|
114 |
+
# Loss function
|
115 |
+
def loss_function(recon_x, x, mu, logvar):
|
116 |
+
BCE = nn.functional.mse_loss(recon_x, x, reduction='sum')
|
117 |
+
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
118 |
+
return BCE + KLD
|
119 |
+
|
120 |
+
# Updated training function
|
121 |
+
def train(model, train_loader, optimizer, device, tokenizer):
|
122 |
+
model.train()
|
123 |
+
train_loss = 0
|
124 |
+
for batch_idx, (data, prompt) in enumerate(train_loader):
|
125 |
+
data = data.to(device)
|
126 |
+
optimizer.zero_grad()
|
127 |
+
|
128 |
+
encoded_input = tokenizer(prompt, padding=True, truncation=True, return_tensors="pt")
|
129 |
+
input_ids = encoded_input['input_ids'].to(device)
|
130 |
+
attention_mask = encoded_input['attention_mask'].to(device)
|
131 |
+
|
132 |
+
text_encoding = model.text_encoder(input_ids, attention_mask)
|
133 |
+
|
134 |
+
recon_batch, mu, logvar = model(data, text_encoding)
|
135 |
+
loss = loss_function(recon_batch, data, mu, logvar)
|
136 |
+
loss.backward()
|
137 |
+
train_loss += loss.item()
|
138 |
+
optimizer.step()
|
139 |
+
|
140 |
+
# Log batch-level metrics
|
141 |
+
wandb.log({
|
142 |
+
"batch_loss": loss.item(),
|
143 |
+
"batch_reconstruction_loss": nn.functional.mse_loss(recon_batch, data, reduction='mean').item(),
|
144 |
+
"batch_kl_divergence": (-0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) / data.size(0)).item()
|
145 |
+
})
|
146 |
+
|
147 |
+
avg_loss = train_loss / len(train_loader.dataset)
|
148 |
+
return avg_loss
|
149 |
+
|
150 |
+
# Updated main function
|
151 |
+
def main():
|
152 |
+
|
153 |
+
NUM_EPOCHS = 500
|
154 |
+
BATCH_SIZE = 128
|
155 |
+
LEARNING_RATE = 1e-4
|
156 |
+
|
157 |
+
# New hyperparameters
|
158 |
+
SAVE_INTERVAL = 25 # Save model every XXX epochs
|
159 |
+
SAVE_INTERVAL_IMAGE = 1 # Save generated image every XXX epochs
|
160 |
+
PROJECT_NAME = "BitRoss"
|
161 |
+
MODEL_NAME = "BitRoss"
|
162 |
+
SAVE_DIR = "/models/BitRoss/"
|
163 |
+
|
164 |
+
if(os.path.exists(SAVE_DIR) == False):
|
165 |
+
os.makedirs(SAVE_DIR)
|
166 |
+
|
167 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
168 |
+
|
169 |
+
if not os.path.exists(SAVE_DIR):
|
170 |
+
os.makedirs(SAVE_DIR)
|
171 |
+
|
172 |
+
DATA_DIR = "./trainingData/"
|
173 |
+
METADATA_FILE = "./trainingData/metadata.json"
|
174 |
+
|
175 |
+
|
176 |
+
# Initialize wandb
|
177 |
+
wandb.init(project=PROJECT_NAME, config={
|
178 |
+
"LATENT_DIM": LATENT_DIM,
|
179 |
+
"HIDDEN_DIM": HIDDEN_DIM,
|
180 |
+
"NUM_EPOCHS": NUM_EPOCHS,
|
181 |
+
"BATCH_SIZE": BATCH_SIZE,
|
182 |
+
"LEARNING_RATE": LEARNING_RATE,
|
183 |
+
"SAVE_INTERVAL": SAVE_INTERVAL,
|
184 |
+
"MODEL_NAME": MODEL_NAME
|
185 |
+
})
|
186 |
+
|
187 |
+
|
188 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
189 |
+
|
190 |
+
dataset = Text2ImageDataset(DATA_DIR, METADATA_FILE)
|
191 |
+
train_loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
|
192 |
+
|
193 |
+
text_encoder = TextEncoder(hidden_size=HIDDEN_DIM, output_size=HIDDEN_DIM)
|
194 |
+
model = CVAE(text_encoder).to(device)
|
195 |
+
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
196 |
+
|
197 |
+
# Log model architecture
|
198 |
+
wandb.watch(model, log="all", log_freq=100)
|
199 |
+
|
200 |
+
for epoch in range(1, NUM_EPOCHS + 1):
|
201 |
+
train_loss = train(model, train_loader, optimizer, device, tokenizer)
|
202 |
+
print(f'Epoch {epoch}, Loss: {train_loss:.4f}')
|
203 |
+
|
204 |
+
# Log epoch-level metrics
|
205 |
+
wandb.log({
|
206 |
+
"epoch": epoch,
|
207 |
+
"train_loss": train_loss,
|
208 |
+
})
|
209 |
+
|
210 |
+
# Generate image and save model every SAVE_INTERVAL epochs
|
211 |
+
if epoch % SAVE_INTERVAL_IMAGE == 0:
|
212 |
+
# Generate image
|
213 |
+
output_image = f"{SAVE_DIR}output_epoch_{epoch}.png"
|
214 |
+
|
215 |
+
# Generate image using the current model state
|
216 |
+
from generate import generate_image
|
217 |
+
prompt = "A blue sword made of diamond" # You can change this prompt as needed
|
218 |
+
generated_image = generate_image(model, prompt, device)
|
219 |
+
generated_image.save(output_image)
|
220 |
+
|
221 |
+
# Upload generated image to wandb
|
222 |
+
wandb.log({
|
223 |
+
"generated_image": wandb.Image(output_image, caption=f"Generated at epoch {epoch} with prompt {prompt}")
|
224 |
+
})
|
225 |
+
|
226 |
+
|
227 |
+
if epoch % SAVE_INTERVAL == 0:
|
228 |
+
model_save_path = f"{SAVE_DIR}{MODEL_NAME}_epoch_{epoch}.pth"
|
229 |
+
torch.save(model.state_dict(), model_save_path)
|
230 |
+
print(f"Model saved to {model_save_path}")
|
231 |
+
|
232 |
+
# Log sample reconstructions
|
233 |
+
if epoch % 10 == 0:
|
234 |
+
model.eval()
|
235 |
+
with torch.no_grad():
|
236 |
+
sample_data, sample_prompt = next(iter(train_loader))
|
237 |
+
sample_data = sample_data[:4].to(device) # Take first 4 samples
|
238 |
+
encoded_input = tokenizer(sample_prompt[:4], padding=True, truncation=True, return_tensors="pt")
|
239 |
+
input_ids = encoded_input['input_ids'].to(device)
|
240 |
+
attention_mask = encoded_input['attention_mask'].to(device)
|
241 |
+
text_encoding = model.text_encoder(input_ids, attention_mask)
|
242 |
+
recon_batch, _, _ = model(sample_data, text_encoding)
|
243 |
+
|
244 |
+
# Denormalize and convert to PIL images
|
245 |
+
original_images = [transforms.ToPILImage()((sample_data[i] * 0.5 + 0.5).cpu()) for i in range(4)]
|
246 |
+
reconstructed_images = [transforms.ToPILImage()((recon_batch[i] * 0.5 + 0.5).cpu()) for i in range(4)]
|
247 |
+
|
248 |
+
wandb.log({
|
249 |
+
f"original_vs_reconstructed_{i}": [wandb.Image(original_images[i], caption=f"Original {i}"),
|
250 |
+
wandb.Image(reconstructed_images[i], caption=f"Reconstructed {i}")]
|
251 |
+
for i in range(4)
|
252 |
+
})
|
253 |
+
|
254 |
+
wandb.finish()
|
255 |
+
|
256 |
+
if __name__ == "__main__":
|
257 |
+
main()
|