|
|
|
"""ArabicPoetryGeneration.ipynb |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1HDyT5F8qnrbR_PW_HYpiM3O-7i6htGG2 |
|
""" |
|
''' |
|
pip install transformers |
|
pip install tashaphyne |
|
pip install gradio |
|
pip install translate |
|
''' |
|
|
|
import pandas as pd |
|
import nltk |
|
from nltk.tokenize import word_tokenize |
|
from transformers import BertTokenizer |
|
from transformers import AutoTokenizer |
|
import random |
|
from tashaphyne import normalize |
|
import re |
|
import numpy as np |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
from tensorflow.keras.models import Sequential |
|
from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional, GRU |
|
import tensorflow as tf |
|
from transformers import AutoTokenizer |
|
|
|
nltk.download('punkt') |
|
nltk.download('wordnet') |
|
|
|
aurl = 'https://raw.githubusercontent.com/Obai33/NLP_PoemGenerationDatasets/main/arabicpoems.csv' |
|
adf = pd.read_csv(aurl) |
|
|
|
|
|
def normalize_text(text): |
|
normalize.strip_tashkeel(text) |
|
normalize.strip_tatweel(text) |
|
normalize.normalize_hamza(text) |
|
normalize.normalize_lamalef(text) |
|
return text |
|
|
|
|
|
allah = normalize_text('ุงููู') |
|
adf = adf['poem_text'] |
|
i = random.randint(0, len(adf)) |
|
adf = adf.sample(n=100, random_state=i) |
|
adf = adf.apply(lambda x: normalize_text(x)) |
|
adf = adf[~adf.str.contains(allah)] |
|
|
|
|
|
def remove_non_arabic_symbols(text): |
|
arabic_pattern = r'[\u0600-\u06FF\s]+' |
|
arabic_text = re.findall(arabic_pattern, text) |
|
cleaned_text = ''.join(arabic_text) |
|
return cleaned_text |
|
|
|
|
|
adf = adf.apply(lambda x: remove_non_arabic_symbols(x)) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv2") |
|
tokens = tokenizer.tokenize(adf.tolist(), is_split_into_words=True) |
|
|
|
input_sequences = [] |
|
for line in adf: |
|
token_list = tokenizer.encode(line, add_special_tokens=True) |
|
for i in range(1, len(token_list)): |
|
n_gram_sequence = token_list[:i+1] |
|
input_sequences.append(n_gram_sequence) |
|
|
|
max_sequence_len = 100 |
|
input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre')) |
|
|
|
total_words = tokenizer.vocab_size |
|
|
|
xs, labels = input_sequences[:, :-1], input_sequences[:, -1] |
|
ys = tf.keras.utils.to_categorical(labels, num_classes=total_words) |
|
|
|
print('error not here') |
|
|
|
|
|
|
|
import requests |
|
''' |
|
# URL of the model |
|
url = 'https://github.com/Obai33/NLP_PoemGenerationDatasets/raw/main/modelarab1.h5' |
|
# Local file path to save the model |
|
local_filename = 'modelarab1.h5' |
|
|
|
# Download the model file |
|
response = requests.get(url) |
|
with open(local_filename, 'wb') as f: |
|
f.write(response.content) |
|
''' |
|
model = tf.keras.models.load('my_model') |
|
|
|
|
|
|
|
print('ok model loaded') |
|
|
|
|
|
|
|
import translate |
|
|
|
|
|
def translate_to_english(text): |
|
translator = translate.Translator(from_lang="ar", to_lang="en") |
|
translated_text = translator.translate(text) |
|
return translated_text |
|
|
|
def generate_arabic_text(seed_text, next_words=50): |
|
generated_text = seed_text |
|
for _ in range(next_words): |
|
token_list = tokenizer.encode(generated_text, add_special_tokens=False) |
|
token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre') |
|
predicted = np.argmax(model.predict(token_list), axis=-1) |
|
output_word = tokenizer.decode(predicted[0]) |
|
generated_text += " " + output_word |
|
reconnected_text = generated_text.replace(" ##", "") |
|
t_text = translate_to_english(reconnected_text) |
|
return reconnected_text, t_text |
|
|
|
import gradio as gr |
|
print('error not here') |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_arabic_text, |
|
inputs="text", |
|
outputs=["text", "text"], |
|
title="Arabic Poetry Generation", |
|
description="Enter Arabic text to generate a small poem.", |
|
theme="compact" |
|
) |
|
|
|
iface.launch(share = True) |