Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""ArabicPoetryGeneration.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1HDyT5F8qnrbR_PW_HYpiM3O-7i6htGG2 | |
""" | |
!pip install transformers | |
!pip install tashaphyne | |
!pip install gradio | |
!pip install translate | |
import pandas as pd | |
import nltk | |
from nltk.tokenize import word_tokenize | |
from transformers import BertTokenizer | |
from transformers import AutoTokenizer | |
import random | |
from tashaphyne import normalize | |
import re | |
import numpy as np | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional, GRU | |
import tensorflow as tf | |
from transformers import AutoTokenizer | |
nltk.download('punkt') | |
nltk.download('wordnet') | |
aurl = 'https://raw.githubusercontent.com/Obai33/NLP_PoemGenerationDatasets/main/arabicpoems.csv' | |
adf = pd.read_csv(aurl) | |
# Function to normalize text | |
def normalize_text(text): | |
normalize.strip_tashkeel(text) | |
normalize.strip_tatweel(text) | |
normalize.normalize_hamza(text) | |
normalize.normalize_lamalef(text) | |
return text | |
# Normalize the text | |
allah = normalize_text('ุงููู') | |
adf = adf['poem_text'] | |
i = random.randint(0, len(adf)) | |
adf = adf.sample(n=100, random_state=i) | |
adf = adf.apply(lambda x: normalize_text(x)) | |
adf = adf[~adf.str.contains(allah)] | |
# Function to clean text | |
def remove_non_arabic_symbols(text): | |
arabic_pattern = r'[\u0600-\u06FF\s]+' | |
arabic_text = re.findall(arabic_pattern, text) | |
cleaned_text = ''.join(arabic_text) | |
return cleaned_text | |
# Clean the text | |
adf = adf.apply(lambda x: remove_non_arabic_symbols(x)) | |
# Tokenize the text | |
tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv2") | |
tokens = tokenizer.tokenize(adf.tolist(), is_split_into_words=True) | |
input_sequences = [] | |
for line in adf: | |
token_list = tokenizer.encode(line, add_special_tokens=True) | |
for i in range(1, len(token_list)): | |
n_gram_sequence = token_list[:i+1] | |
input_sequences.append(n_gram_sequence) | |
max_sequence_len = 100 | |
input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre')) | |
total_words = tokenizer.vocab_size | |
xs, labels = input_sequences[:, :-1], input_sequences[:, -1] | |
ys = tf.keras.utils.to_categorical(labels, num_classes=total_words) | |
############## | |
import requests | |
# URL of the model | |
url = 'https://github.com/Obai33/NLP_PoemGenerationDatasets/raw/main/modelarab1.h5' | |
# Local file path to save the model | |
local_filename = 'modelarab1.h5' | |
# Download the model file | |
response = requests.get(url) | |
with open(local_filename, 'wb') as f: | |
f.write(response.content) | |
# Load the pre-trained model | |
model = tf.keras.models.load_model(local_filename) | |
############## | |
# Import the necessary library for translation | |
import translate | |
# Function to translate text to English | |
def translate_to_english(text): | |
translator = translate.Translator(from_lang="ar", to_lang="en") | |
translated_text = translator.translate(text) | |
return translated_text | |
def generate_arabic_text(seed_text, next_words=50): | |
generated_text = seed_text | |
for _ in range(next_words): | |
token_list = tokenizer.encode(generated_text, add_special_tokens=False) | |
token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre') | |
predicted = np.argmax(model.predict(token_list), axis=-1) | |
output_word = tokenizer.decode(predicted[0]) | |
generated_text += " " + output_word | |
reconnected_text = generated_text.replace(" ##", "") | |
t_text = translate_to_english(reconnected_text) | |
return reconnected_text, t_text | |
import gradio as gr | |
# Update Gradio interface to include both Arabic and English outputs | |
iface = gr.Interface( | |
fn=generate_arabic_text, | |
inputs="text", | |
outputs=["text", "text"], | |
title="Arabic Poetry Generation", | |
description="Enter Arabic text to generate a small poem.", | |
theme="compact" | |
) | |
# Run the interface | |
iface.launch() |