File size: 11,343 Bytes
d2beadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8dbdd
d2beadd
 
 
 
 
 
6b8dbdd
d2beadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8dbdd
d2beadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8dbdd
d2beadd
 
6b8dbdd
 
 
 
 
d2beadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
# import sys
import importlib
import re
from typing import Dict, Any, List
from datetime import datetime

from opentools.engine.openai import ChatOpenAI 
from opentools.models.formatters import ToolCommand

import signal
from typing import Dict, Any, List, Optional

class TimeoutError(Exception):
    pass

def timeout_handler(signum, frame):
    raise TimeoutError("Function execution timed out")

class Executor:
    def __init__(self, llm_engine_name: str, root_cache_dir: str = "solver_cache",  num_threads: int = 1, max_time: int = 120, max_output_length: int = 100000, enable_signal: bool = True, api_key: str = None):
        self.llm_engine_name = llm_engine_name
        self.root_cache_dir = root_cache_dir
        self.num_threads = num_threads
        self.max_time = max_time
        self.max_output_length = max_output_length
        self.enable_signal = enable_signal
        self.api_key = api_key

    def set_query_cache_dir(self, query_cache_dir):
        if query_cache_dir:
            self.query_cache_dir = query_cache_dir
        else:
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            self.query_cache_dir = os.path.join(self.root_cache_dir, timestamp)
        os.makedirs(self.query_cache_dir, exist_ok=True)
    
    def generate_tool_command(self, question: str, image: str, context: str, sub_goal: str, tool_name: str, tool_metadata: Dict[str, Any], bytes_mode:bool = False) -> ToolCommand:
        prompt_generate_tool_command = f"""
Task: Generate a precise command to execute the selected tool based on the given information.

Query: {question}
Image: {image if not bytes_mode else 'image.jpg'}
Context: {context}
Sub-Goal: {sub_goal}
Selected Tool: {tool_name}
Tool Metadata: {tool_metadata}

Instructions:
1. Carefully review all provided information: the query, image path, context, sub-goal, selected tool, and tool metadata.
2. Analyze the tool's input_types from the metadata to understand required and optional parameters.
3. Construct a command or series of commands that aligns with the tool's usage pattern and addresses the sub-goal.
4. Ensure all required parameters are included and properly formatted.
5. Use appropriate values for parameters based on the given context, particularly the `Context` field which may contain relevant information from previous steps.
6. If multiple steps are needed to prepare data for the tool, include them in the command construction.

Output Format:
<analysis>: a step-by-step analysis of the context, sub-goal, and selected tool to guide the command construction.
<explanation>: a detailed explanation of the constructed command(s) and their parameters.
<command>: the Python code to execute the tool, which can be one of the following types:
    a. A single line command with `execution = tool.execute()`.
    b. A multi-line command with complex data preparation, ending with `execution = tool.execute()`.
    c. Multiple lines of `execution = tool.execute()` calls for processing multiple items.
```python
<your command here>
```

Rules:
1. The command MUST be valid Python code and include at least one call to `tool.execute()`.
2. Each `tool.execute()` call MUST be assigned to the 'execution' variable in the format `execution = tool.execute(...)`.
3. For multiple executions, use separate `execution = tool.execute()` calls for each execution.
4. The final output MUST be assigned to the 'execution' variable, either directly from `tool.execute()` or as a processed form of multiple executions.
5. Use the exact parameter names as specified in the tool's input_types.
6. Enclose string values in quotes, use appropriate data types for other values (e.g., lists, numbers).
7. Do not include any code or text that is not part of the actual command.
8. Ensure the command directly addresses the sub-goal and query.
9. Include ALL required parameters, data, and paths to execute the tool in the command itself.
10. If preparation steps are needed, include them as separate Python statements before the `tool.execute()` calls.

Examples (Not to use directly unless relevant):

Example 1 (Single line command):
<analysis>: The tool requires an image path and a list of labels for object detection.
<explanation>: We pass the image path and a list containing "baseball" as the label to detect.
<command>:
```python
execution = tool.execute(image="path/to/image", labels=["baseball"])
```

Example 2 (Multi-line command with data preparation):
<analysis>: The tool requires an image path, multiple labels, and a threshold for object detection.
<explanation>: We prepare the data by defining variables for the image path, labels, and threshold, then pass these to the tool.execute() function.
<command>:
```python
image = "path/to/image"
labels = ["baseball", "football", "basketball"]
threshold = 0.5
execution = tool.execute(image=image, labels=labels, threshold=threshold)
```

Example 3 (Multiple executions):
<analysis>: We need to process multiple images for baseball detection.
<explanation>: We call the tool for each image path, using the same label and threshold for all.
<command>:
```python
execution = tool.execute(image="path/to/image1", labels=["baseball"], threshold=0.5)
execution = tool.execute(image="path/to/image2", labels=["baseball"], threshold=0.5)
execution = tool.execute(image="path/to/image3", labels=["baseball"], threshold=0.5)
```

Some Wrong Examples:
<command>:
```python
execution1 = tool.execute(query="...")
execution2 = tool.execute(query="...")
```
Reason: only `execution = tool.execute` is allowed, not `execution1` or `execution2`.

<command>:
```python
urls = [
    "https://example.com/article1",
    "https://example.com/article2"
]

execution = tool.execute(url=urls[0])
execution = tool.execute(url=urls[1])
```
Reason: The command should process multiple items in a single execution, not separate executions for each item.

Remember: Your <command> field MUST be valid Python code including any necessary data preparation steps and one or more `execution = tool.execute(` calls, without any additional explanatory text. The format `execution = tool.execute` must be strictly followed, and the last line must begin with `execution = tool.execute` to capture the final output.
"""

        llm_generate_tool_command = ChatOpenAI(model_string=self.llm_engine_name, is_multimodal=False, api_key=self.api_key)
        tool_command = llm_generate_tool_command(prompt_generate_tool_command, response_format=ToolCommand)

        return tool_command

    # def extract_explanation_and_command(self, text: str) -> tuple:
    #     # Extract explanation
    #     explanation_pattern = r"Command Explanation:(.*?)Generated Command:"
    #     explanation_match = re.search(explanation_pattern, text, re.DOTALL)
    #     explanation = explanation_match.group(1).strip() if explanation_match else "No explanation found."
    #     # Extract command
    #     command_pattern = r"Generated Command:.*?```python\n(.*?)```"
    #     command_match = re.search(command_pattern, text, re.DOTALL)
    #     command = command_match.group(1).strip() if command_match else "No command found."

    def extract_explanation_and_command(self, response: ToolCommand) -> tuple:
        def normarlize_code(code: str) -> str:
            # Remove leading and trailing whitespace and triple backticks
            return re.sub(r'^```python\s*', '', code).rstrip('```').strip()
        
        explanation = response.explanation.strip()
        command = normarlize_code(response.command.strip())
        return explanation, command

    def execute_tool_command(self, tool_name: str, command: str) -> Any:
        """
        Execute a tool command with timeout protection. If execution exceeds max_time seconds,
        the function will be interrupted and return a timeout message.
        
        Args:
            tool_name (str): Name of the tool to execute
            command (str): Command string containing tool.execute() calls
            
        Returns:
            Any: List of execution results or error message
        """
        
        def split_commands(command: str) -> List[str]:
            # Use regex to find all tool.execute() commands and their surrounding code
            pattern = r'.*?execution\s*=\s*tool\.execute\([^\n]*\)\s*(?:\n|$)'
            blocks = re.findall(pattern, command, re.DOTALL)
            return [block.strip() for block in blocks if block.strip()]
        
        def execute_with_timeout(block: str, local_context: dict) -> Optional[str]:
            if self.enable_signal:
                # Set up the timeout handler
                signal.signal(signal.SIGALRM, timeout_handler)
                signal.alarm(self.max_time)
            
            try:
                # Execute the block in the local context
                exec(block, globals(), local_context)
                result = local_context.get('execution')
                if self.enable_signal:
                    signal.alarm(0)  # Disable the alarm
                return result
            except TimeoutError:
                return f"Execution timed out after {self.max_time} seconds"
            finally:
                if self.enable_signal:
                    signal.alarm(0)  # Ensure alarm is disabled even if other exceptions occur

        # Import the tool module and instantiate it
        module_name = f"tools.{tool_name.lower().replace('_tool', '')}.tool"
        
        # print(f"Attempting to import module: {module_name}")
        # print(f"Current sys.path: {sys.path}")

        try:
            # Dynamically import the module
            module = importlib.import_module(module_name)

            # Get the tool class
            tool_class = getattr(module, tool_name)

            # Check if the tool requires an LLM engine
            # NOTE FIXME may need to refine base.py and tool.py to handle this better
            inputs = {}
            if getattr(tool_class, 'require_llm_engine', False):
                # Instantiate the tool with the model_string
                inputs['model_string'] = self.llm_engine_name
            if getattr(tool_class, 'require_api_key', False):
                # Instantiate the tool with the api_key
                inputs['api_key'] = self.api_key
            tool = tool_class(**inputs)
            
            # Set the custom output directory
            # NOTE FIXME: May have a better way to handle this
            tool.set_custom_output_dir(self.query_cache_dir)

            # Split the command into blocks, execute each one and store execution results
            command_blocks = split_commands(command)
            executions = []

            for block in command_blocks:
                # Create a local context to safely execute the block
                local_context = {'tool': tool}

                # Execute the block with timeout protection
                result = execute_with_timeout(block, local_context)
                
                if result is not None:
                    executions.append(result)
                else:
                    executions.append(f"No execution captured from block: {block}")

            # Return all the execution results
            return executions
        except Exception as e:
            return f"Error in execute_tool_command: {str(e)}"