Spaces:
Runtime error
Runtime error
File size: 12,451 Bytes
ac47a36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import sys
import json
import argparse
import time
import io
import uuid
from PIL import Image
from typing import List, Dict, Any, Iterator
import gradio as gr
# Add the project root to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
sys.path.insert(0, project_root)
from opentools.models.initializer import Initializer
from opentools.models.planner import Planner
from opentools.models.memory import Memory
from opentools.models.executor import Executor
from opentools.models.utlis import make_json_serializable
solver = None
class ChatMessage:
def __init__(self, role: str, content: str, metadata: dict = None):
self.role = role
self.content = content
self.metadata = metadata or {}
class Solver:
def __init__(
self,
planner,
memory,
executor,
task: str,
task_description: str,
output_types: str = "base,final,direct",
index: int = 0,
verbose: bool = True,
max_steps: int = 10,
max_time: int = 60,
output_json_dir: str = "results",
root_cache_dir: str = "cache"
):
self.planner = planner
self.memory = memory
self.executor = executor
self.task = task
self.task_description = task_description
self.index = index
self.verbose = verbose
self.max_steps = max_steps
self.max_time = max_time
self.output_json_dir = output_json_dir
self.root_cache_dir = root_cache_dir
self.output_types = output_types.lower().split(',')
assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
# self.benchmark_data = self.load_benchmark_data()
def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
"""
Streams intermediate thoughts and final responses for the problem-solving process based on user input.
Args:
user_query (str): The text query input from the user.
user_image (Image.Image): The uploaded image from the user (PIL Image object).
messages (list): A list of ChatMessage objects to store the streamed responses.
"""
if user_image:
# # Convert PIL Image to bytes (for processing)
# img_bytes_io = io.BytesIO()
# user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
# img_bytes = img_bytes_io.getvalue() # Get bytes
# Use image paths instead of bytes,
os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
user_image.save(img_path)
else:
img_path = None
# Set query cache
_cache_dir = os.path.join(self.root_cache_dir)
self.executor.set_query_cache_dir(_cache_dir)
# Step 1: Display the received inputs
if user_image:
messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}\nπΌοΈ Image Uploaded"))
else:
messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}"))
yield messages
# Step 2: Add "thinking" status while processing
messages.append(ChatMessage(
role="assistant",
content="",
metadata={"title": "β³ Thinking: Processing input..."}
))
# Step 3: Initialize problem-solving state
start_time = time.time()
step_count = 0
json_data = {"query": user_query, "image": "Image received as bytes"}
# Step 4: Query Analysis
query_analysis = self.planner.analyze_query(user_query, img_path)
json_data["query_analysis"] = query_analysis
messages.append(ChatMessage(role="assistant", content=f"π Query Analysis:\n{query_analysis}"))
yield messages
# Step 5: Execution loop (similar to your step-by-step solver)
while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
step_count += 1
messages.append(ChatMessage(role="assistant", content=f"π Step {step_count}: Generating next step..."))
yield messages
# Generate the next step
next_step = self.planner.generate_next_step(
user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
)
context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
# Display the step information
messages.append(ChatMessage(
role="assistant",
content=f"π Step {step_count} Details:\n- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}"
))
yield messages
# Handle tool execution or errors
if tool_name not in self.planner.available_tools:
messages.append(ChatMessage(role="assistant", content=f"β οΈ Error: Tool '{tool_name}' is not available."))
yield messages
continue
# Execute the tool command
tool_command = self.executor.generate_tool_command(
user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
)
explanation, command = self.executor.extract_explanation_and_command(tool_command)
result = self.executor.execute_tool_command(tool_name, command)
result = make_json_serializable(result)
messages.append(ChatMessage(role="assistant", content=f"β
Step {step_count} Result:\n{json.dumps(result, indent=4)}"))
yield messages
# Step 6: Memory update and stopping condition
self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
conclusion = self.planner.extract_conclusion(stop_verification)
messages.append(ChatMessage(role="assistant", content=f"π Step {step_count} Conclusion: {conclusion}"))
yield messages
if conclusion == 'STOP':
break
# Step 7: Generate Final Output (if needed)
if 'final' in self.output_types:
final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
messages.append(ChatMessage(role="assistant", content=f"π― Final Output:\n{final_output}"))
yield messages
if 'direct' in self.output_types:
direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
messages.append(ChatMessage(role="assistant", content=f"πΉ Direct Output:\n{direct_output}"))
yield messages
# Step 8: Completion Message
messages.append(ChatMessage(role="assistant", content="β
Problem-solving process complete."))
yield messages
def parse_arguments():
parser = argparse.ArgumentParser(description="Run the OpenTools demo with specified parameters.")
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
parser.add_argument("--task", default="minitoolbench", help="Task to run.")
parser.add_argument("--task_description", default="", help="Task description.")
parser.add_argument(
"--output_types",
default="base,final,direct",
help="Comma-separated list of required outputs (base,final,direct)"
)
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
parser.add_argument("--max_steps", type=int, default=10, help="Maximum number of steps to execute.")
parser.add_argument("--max_time", type=int, default=60, help="Maximum time allowed in seconds.")
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
return parser.parse_args()
def solve_problem_gradio(user_query, user_image):
"""
Wrapper function to connect the solver to Gradio.
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
"""
global solver # Ensure we're using the globally defined solver
if solver is None:
return [["assistant", "β οΈ Error: Solver is not initialized. Please restart the application."]]
messages = [] # Initialize message list
for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
yield [[msg.role, msg.content] for msg in message_batch] # Ensure correct format for Gradio Chatbot
def main(args):
global solver
# Initialize Tools
enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
# Instantiate Initializer
initializer = Initializer(
enabled_tools=enabled_tools,
model_string=args.llm_engine_name
)
# Instantiate Planner
planner = Planner(
llm_engine_name=args.llm_engine_name,
toolbox_metadata=initializer.toolbox_metadata,
available_tools=initializer.available_tools
)
# Instantiate Memory
memory = Memory()
# Instantiate Executor
executor = Executor(
llm_engine_name=args.llm_engine_name,
root_cache_dir=args.root_cache_dir,
enable_signal=False
)
# Instantiate Solver
solver = Solver(
planner=planner,
memory=memory,
executor=executor,
task=args.task,
task_description=args.task_description,
output_types=args.output_types, # Add new parameter
verbose=args.verbose,
max_steps=args.max_steps,
max_time=args.max_time,
output_json_dir=args.output_json_dir,
root_cache_dir=args.root_cache_dir
)
# Test Inputs
# user_query = "How many balls are there in the image?"
# user_image_path = "/home/sheng/toolbox-agent/mathvista_113.png" # Replace with your actual image path
# # Load the image as a PIL object
# user_image = Image.open(user_image_path).convert("RGB") # Ensure it's in RGB mode
# print("\n=== Starting Problem Solving ===\n")
# messages = []
# for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# for message in message_batch:
# print(f"{message.role}: {message.content}")
# messages = []
# solver.stream_solve_user_problem(user_query, user_image, messages)
# def solve_problem_stream(user_query, user_image):
# messages = [] # Ensure it's a list of [role, content] pairs
# for message_batch in solver.stream_solve_user_problem(user_query, user_image, messages):
# yield message_batch # Stream messages correctly in tuple format
# solve_problem_stream(user_query, user_image)
# ========== Gradio Interface ==========
with gr.Blocks() as demo:
gr.Markdown("# π§ OctoTools AI Solver") # Title
with gr.Row():
user_query = gr.Textbox(label="Enter your query", placeholder="Type your question here...")
user_image = gr.Image(type="pil", label="Upload an image") # Accepts multiple formats
run_button = gr.Button("Run") # Run button
chatbot_output = gr.Chatbot(label="Problem-Solving Output")
# Link button click to function
run_button.click(fn=solve_problem_gradio, inputs=[user_query, user_image], outputs=chatbot_output)
# Launch the Gradio app
demo.launch()
if __name__ == "__main__":
args = parse_arguments()
main(args) |