Spaces:
Running
on
T4
Running
on
T4
import os | |
import sys | |
import json | |
import argparse | |
import time | |
import io | |
import uuid | |
from PIL import Image | |
from typing import List, Dict, Any, Iterator | |
import gradio as gr | |
from gradio import ChatMessage | |
# Add the project root to the Python path | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir))) | |
sys.path.insert(0, project_root) | |
from octotools.models.initializer import Initializer | |
from octotools.models.planner import Planner | |
from octotools.models.memory import Memory | |
from octotools.models.executor import Executor | |
from octotools.models.utils import make_json_serializable | |
from utils import save_feedback | |
########### Test Huggingface Dataset ########### | |
from pathlib import Path | |
from huggingface_hub import CommitScheduler | |
# Add these near the top of the file with other constants | |
DATASET_DIR = Path("feedback_dataset") | |
DATASET_DIR.mkdir(parents=True, exist_ok=True) | |
DATASET_PATH = DATASET_DIR / f"feedback-{time.strftime('%Y%m%d_%H%M%S')}.json" | |
# Get Huggingface token from environment variable | |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
scheduler = CommitScheduler( | |
repo_id="lupantech/OctoTools-Gradio-Demo-User-Data", | |
repo_type="dataset", | |
folder_path=DATASET_DIR, | |
path_in_repo="data", | |
token=HF_TOKEN | |
) | |
def save_feedback(root_cache_dir: str, feedback_type: str, comment: str = None) -> None: | |
"""Save user feedback to Huggingface dataset""" | |
with scheduler.lock: | |
with DATASET_PATH.open("a") as f: | |
feedback_data = { | |
"query_id": os.path.basename(root_cache_dir), | |
"feedback_type": feedback_type, | |
"comment": comment, | |
"datetime": time.strftime("%Y%m%d_%H%M%S") | |
} | |
json.dump(feedback_data, f) | |
f.write("\n") | |
########### End of Test Huggingface Dataset ########### | |
class Solver: | |
def __init__( | |
self, | |
planner, | |
memory, | |
executor, | |
task: str, | |
task_description: str, | |
output_types: str = "base,final,direct", | |
index: int = 0, | |
verbose: bool = True, | |
max_steps: int = 10, | |
max_time: int = 60, | |
root_cache_dir: str = "cache" | |
): | |
self.planner = planner | |
self.memory = memory | |
self.executor = executor | |
self.task = task | |
self.task_description = task_description | |
self.index = index | |
self.verbose = verbose | |
self.max_steps = max_steps | |
self.max_time = max_time | |
self.root_cache_dir = root_cache_dir | |
self.output_types = output_types.lower().split(',') | |
assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'." | |
def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, api_key: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]: | |
""" | |
Streams intermediate thoughts and final responses for the problem-solving process based on user input. | |
Args: | |
user_query (str): The text query input from the user. | |
user_image (Image.Image): The uploaded image from the user (PIL Image object). | |
messages (list): A list of ChatMessage objects to store the streamed responses. | |
""" | |
if user_image: | |
# # Convert PIL Image to bytes (for processing) | |
# img_bytes_io = io.BytesIO() | |
# user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes | |
# img_bytes = img_bytes_io.getvalue() # Get bytes | |
# Use image paths instead of bytes, | |
# os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True) | |
# img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg') | |
img_path = os.path.join(self.root_cache_dir, 'query_image.jpg') | |
user_image.save(img_path) | |
else: | |
img_path = None | |
# Set tool cache directory | |
_cache_dir = os.path.join(self.root_cache_dir, "tool_cache") # NOTE: This is the directory for tool cache | |
self.executor.set_query_cache_dir(_cache_dir) | |
# Step 1: Display the received inputs | |
if user_image: | |
messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}\nπΌοΈ Image Uploaded")) | |
else: | |
messages.append(ChatMessage(role="assistant", content=f"π Received Query: {user_query}")) | |
yield messages | |
# # Step 2: Add "thinking" status while processing | |
# messages.append(ChatMessage( | |
# role="assistant", | |
# content="", | |
# metadata={"title": "β³ Thinking: Processing input..."} | |
# )) | |
# Step 3: Initialize problem-solving state | |
start_time = time.time() | |
step_count = 0 | |
json_data = {"query": user_query, "image": "Image received as bytes"} | |
# Step 4: Query Analysis | |
query_analysis = self.planner.analyze_query(user_query, img_path) | |
json_data["query_analysis"] = query_analysis | |
messages.append(ChatMessage(role="assistant", | |
content=f"{query_analysis}", | |
metadata={"title": "π Query Analysis"})) | |
yield messages | |
# Step 5: Execution loop (similar to your step-by-step solver) | |
while step_count < self.max_steps and (time.time() - start_time) < self.max_time: | |
step_count += 1 | |
# messages.append(ChatMessage(role="assistant", | |
# content=f"Generating next step...", | |
# metadata={"title": f"π Step {step_count}"})) | |
yield messages | |
# Generate the next step | |
next_step = self.planner.generate_next_step( | |
user_query, img_path, query_analysis, self.memory, step_count, self.max_steps | |
) | |
context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step) | |
# Display the step information | |
messages.append(ChatMessage( | |
role="assistant", | |
content=f"- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}", | |
metadata={"title": f"π Step {step_count}: {tool_name}"} | |
)) | |
yield messages | |
# Handle tool execution or errors | |
if tool_name not in self.planner.available_tools: | |
messages.append(ChatMessage( | |
role="assistant", | |
content=f"β οΈ Error: Tool '{tool_name}' is not available.")) | |
yield messages | |
continue | |
# Execute the tool command | |
tool_command = self.executor.generate_tool_command( | |
user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name] | |
) | |
explanation, command = self.executor.extract_explanation_and_command(tool_command) | |
result = self.executor.execute_tool_command(tool_name, command) | |
result = make_json_serializable(result) | |
messages.append(ChatMessage( | |
role="assistant", | |
content=f"{json.dumps(result, indent=4)}", | |
metadata={"title": f"β Step {step_count} Result: {tool_name}"})) | |
yield messages | |
# Step 6: Memory update and stopping condition | |
self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result) | |
stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory) | |
conclusion = self.planner.extract_conclusion(stop_verification) | |
messages.append(ChatMessage( | |
role="assistant", | |
content=f"π Step {step_count} Conclusion: {conclusion}")) | |
yield messages | |
if conclusion == 'STOP': | |
break | |
# Step 7: Generate Final Output (if needed) | |
if 'final' in self.output_types: | |
final_output = self.planner.generate_final_output(user_query, img_path, self.memory) | |
messages.append(ChatMessage(role="assistant", content=f"π― Final Output:\n{final_output}")) | |
yield messages | |
if 'direct' in self.output_types: | |
direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory) | |
messages.append(ChatMessage(role="assistant", content=f"πΉ Direct Output:\n{direct_output}")) | |
yield messages | |
# Step 8: Completion Message | |
messages.append(ChatMessage(role="assistant", content="β Problem-solving process completed.")) | |
yield messages | |
def parse_arguments(): | |
parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.") | |
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.") | |
parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.") | |
parser.add_argument("--task", default="minitoolbench", help="Task to run.") | |
parser.add_argument("--task_description", default="", help="Task description.") | |
parser.add_argument( | |
"--output_types", | |
default="base,final,direct", | |
help="Comma-separated list of required outputs (base,final,direct)" | |
) | |
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.") | |
parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.") | |
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.") | |
# NOTE: Add new arguments | |
parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).") | |
parser.add_argument("--openai_api_source", default="we_provided", choices=["we_provided", "user_provided"], help="Source of OpenAI API key.") | |
return parser.parse_args() | |
def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_key=None, llm_model_engine=None, enabled_tools=None): | |
""" | |
Wrapper function to connect the solver to Gradio. | |
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates. | |
""" | |
# Generate shorter ID (Date and first 8 characters of UUID) | |
query_id = time.strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())[:8] # e.g, 20250217_062225_612f2474 | |
print(f"Query ID: {query_id}") | |
# Create a directory for the query ID | |
query_dir = os.path.join(args.root_cache_dir, query_id) | |
os.makedirs(query_dir, exist_ok=True) | |
args.root_cache_dir = query_dir | |
if api_key is None: | |
return [["assistant", "β οΈ Error: OpenAI API Key is required."]] | |
# # Initialize Tools | |
# enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else [] | |
# # Hack enabled_tools | |
# enabled_tools = ["Generalist_Solution_Generator_Tool"] | |
# Instantiate Initializer | |
initializer = Initializer( | |
enabled_tools=enabled_tools, | |
model_string=llm_model_engine, | |
api_key=api_key | |
) | |
# Instantiate Planner | |
planner = Planner( | |
llm_engine_name=llm_model_engine, | |
toolbox_metadata=initializer.toolbox_metadata, | |
available_tools=initializer.available_tools, | |
api_key=api_key | |
) | |
# Instantiate Memory | |
memory = Memory() | |
# Instantiate Executor | |
executor = Executor( | |
llm_engine_name=llm_model_engine, | |
root_cache_dir=args.root_cache_dir, # NOTE | |
enable_signal=False, | |
api_key=api_key | |
) | |
# Instantiate Solver | |
solver = Solver( | |
planner=planner, | |
memory=memory, | |
executor=executor, | |
task=args.task, | |
task_description=args.task_description, | |
output_types=args.output_types, # Add new parameter | |
verbose=args.verbose, | |
max_steps=max_steps, | |
max_time=max_time, | |
root_cache_dir=args.root_cache_dir # NOTE | |
) | |
if solver is None: | |
return [["assistant", "β οΈ Error: Solver is not initialized. Please restart the application."]] | |
messages = [] # Initialize message list | |
for message_batch in solver.stream_solve_user_problem(user_query, user_image, api_key, messages): | |
yield [msg for msg in message_batch] # Ensure correct format for Gradio Chatbot | |
def main(args): | |
#################### Gradio Interface #################### | |
with gr.Blocks() as demo: | |
# with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
# Theming https://www.gradio.app/guides/theming-guide | |
gr.Markdown("# π Chat with OctoTools: An Agentic Framework for Complex Reasoning") # Title | |
# gr.Markdown("[](https://octotools.github.io/)") # Title | |
gr.Markdown(""" | |
**OctoTools** is a training-free, user-friendly, and easily extensible open-source agentic framework designed to tackle complex reasoning across diverse domains. | |
It introduces standardized **tool cards** to encapsulate tool functionality, a **planner** for both high-level and low-level planning, and an **executor** to carry out tool usage. | |
[Website](https://octotools.github.io/) | | |
[Github](https://github.com/octotools/octotools) | | |
[arXiv](https://arxiv.org/abs/2502.xxxxx) | | |
[Paper](https://arxiv.org/pdf/2502.xxxxx) | | |
[Tool Cards](https://octotools.github.io/#tool-cards) | | |
[Example Visualizations](https://octotools.github.io/#visualization) | | |
[Discord](https://discord.gg/NMJx66DC) | |
""") | |
with gr.Row(): | |
# Left column for settings | |
with gr.Column(scale=1): | |
with gr.Row(): | |
if args.openai_api_source == "user_provided": | |
print("Using API key from user input.") | |
api_key = gr.Textbox( | |
show_label=True, | |
placeholder="Your API key will not be stored in any way.", | |
type="password", | |
label="OpenAI API Key", | |
# container=False | |
) | |
else: | |
print(f"Using local API key from environment variable: {os.getenv('OPENAI_API_KEY')[:4]}...") | |
api_key = gr.Textbox( | |
value=os.getenv("OPENAI_API_KEY"), | |
visible=False, | |
interactive=False | |
) | |
with gr.Row(): | |
llm_model_engine = gr.Dropdown( | |
choices=["gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13", | |
"gpt-4o-mini", "gpt-4o-mini-2024-07-18"], | |
value="gpt-4o", | |
label="LLM Model" | |
) | |
with gr.Row(): | |
max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1, label="Max Steps") | |
with gr.Row(): | |
max_time = gr.Slider(value=180, minimum=60, maximum=300, step=30, label="Max Time (seconds)") | |
with gr.Row(): | |
# Container for tools section | |
with gr.Column(): | |
# First row for checkbox group | |
enabled_tools = gr.CheckboxGroup( | |
choices=all_tools, | |
value=all_tools, | |
label="Selected Tools", | |
) | |
# Second row for buttons | |
with gr.Row(): | |
enable_all_btn = gr.Button("Select All Tools") | |
disable_all_btn = gr.Button("Clear All Tools") | |
# Add click handlers for the buttons | |
enable_all_btn.click( | |
lambda: all_tools, | |
outputs=enabled_tools | |
) | |
disable_all_btn.click( | |
lambda: [], | |
outputs=enabled_tools | |
) | |
with gr.Column(scale=5): | |
with gr.Row(): | |
# Middle column for the query | |
with gr.Column(scale=2): | |
user_image = gr.Image(type="pil", label="Upload an Image (Optional)", height=500) # Accepts multiple formats | |
with gr.Row(): | |
user_query = gr.Textbox( placeholder="Type your question here...", label="Question (Required)") | |
with gr.Row(): | |
run_button = gr.Button("π Submit and Run", variant="primary") # Run button with blue color | |
# Right column for the output | |
with gr.Column(scale=3): | |
chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output (Deep Thinking)", height=500) | |
# TODO: Add actions to the buttons | |
with gr.Row(elem_id="buttons") as button_row: | |
upvote_btn = gr.Button(value="π Upvote", interactive=True, variant="primary") # TODO | |
downvote_btn = gr.Button(value="π Downvote", interactive=True, variant="primary") # TODO | |
# stop_btn = gr.Button(value="βοΈ Stop", interactive=True) # TODO | |
# clear_btn = gr.Button(value="ποΈ Clear history", interactive=True) # TODO | |
# TODO: Add comment textbox | |
with gr.Row(): | |
comment_textbox = gr.Textbox(value="", | |
placeholder="Feel free to add any comments here. Thanks for using OctoTools!", | |
label="π¬ Comment (Type and press Enter to submit.)", interactive=True) # TODO | |
# Update the button click handlers | |
upvote_btn.click( | |
fn=lambda: save_feedback(args.root_cache_dir, "upvote"), | |
inputs=[], | |
outputs=[] | |
) | |
downvote_btn.click( | |
fn=lambda: save_feedback(args.root_cache_dir, "downvote"), | |
inputs=[], | |
outputs=[] | |
) | |
# Add handler for comment submission | |
comment_textbox.submit( | |
fn=lambda comment: save_feedback(args.root_cache_dir, comment), | |
inputs=[comment_textbox], | |
outputs=[] | |
) | |
# Bottom row for examples | |
with gr.Row(): | |
with gr.Column(scale=5): | |
gr.Markdown("") | |
gr.Markdown(""" | |
## π‘ Try these examples with suggested tools. | |
""") | |
gr.Examples( | |
examples=[ | |
[ None, "Who is the president of the United States?", ["Google_Search_Tool"]], | |
[ "examples/baseball.png", "How many baseballs are there?", ["Object_Detector_Tool"]], | |
[ None, "Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic operations (+, -, Γ, /) and parentheses. For example, one solution for [1, 2, 3, 4] is (1+2+3)Γ4.", ["Python_Code_Generator_Tool"]], | |
[None, "What are the research trends in tool agents with large language models for scientific discovery? Please consider the latest literature from ArXiv, PubMed, Nature, and news sources.", ["ArXiv_Paper_Searcher_Tool", "Pubmed_Search_Tool", "Nature_News_Fetcher_Tool"]], | |
[ "examples/rotting_kiwi.png", "You are given a 3 x 3 grid in which each cell can contain either no kiwi, one fresh kiwi, or one rotten kiwi. Every minute, any fresh kiwi that is 4-directionally adjacent to a rotten kiwi also becomes rotten. What is the minimum number of minutes that must elapse until no cell has a fresh kiwi?", ["Image_Captioner_Tool"]] | |
], | |
inputs=[user_image, user_query, enabled_tools], | |
# label="Try these examples with suggested tools." | |
) | |
# Link button click to function | |
run_button.click( | |
fn=solve_problem_gradio, | |
inputs=[user_query, user_image, max_steps, max_time, api_key, llm_model_engine, enabled_tools], | |
outputs=chatbot_output | |
) | |
#################### Gradio Interface #################### | |
# Launch the Gradio app | |
demo.launch() | |
if __name__ == "__main__": | |
args = parse_arguments() | |
# Manually set enabled tools | |
# args.enabled_tools = "Generalist_Solution_Generator_Tool" | |
# All tools | |
all_tools = [ | |
"Generalist_Solution_Generator_Tool", | |
"Image_Captioner_Tool", | |
"Object_Detector_Tool", | |
"Relevant_Patch_Zoomer_Tool", | |
"Text_Detector_Tool", | |
"Python_Code_Generator_Tool", | |
"ArXiv_Paper_Searcher_Tool", | |
"Google_Search_Tool", | |
"Nature_News_Fetcher_Tool", | |
"Pubmed_Search_Tool", | |
"URL_Text_Extractor_Tool", | |
"Wikipedia_Knowledge_Searcher_Tool" | |
] | |
args.enabled_tools = ",".join(all_tools) | |
main(args) | |