Spaces:
Running
on
T4
Running
on
T4
import os | |
import sys | |
import json | |
import argparse | |
import time | |
import io | |
import uuid | |
from PIL import Image | |
from typing import List, Dict, Any, Iterator | |
import gradio as gr | |
from gradio import ChatMessage | |
# Add the project root to the Python path | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir))) | |
sys.path.insert(0, project_root) | |
from octotools.models.initializer import Initializer | |
from octotools.models.planner import Planner | |
from octotools.models.memory import Memory | |
from octotools.models.executor import Executor | |
from octotools.models.utils import make_json_serializable | |
from pathlib import Path | |
from huggingface_hub import CommitScheduler | |
# Get Huggingface token from environment variable | |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
########### Test Huggingface Dataset ########### | |
# Update the HuggingFace dataset constants | |
DATASET_DIR = Path("solver_cache") # the directory to save the dataset | |
DATASET_DIR.mkdir(parents=True, exist_ok=True) | |
global QUERY_ID | |
QUERY_ID = None | |
scheduler = CommitScheduler( | |
repo_id="lupantech/OctoTools-Gradio-Demo-User-Data", | |
repo_type="dataset", | |
folder_path=DATASET_DIR, | |
path_in_repo="solver_cache", # Update path in repo | |
token=HF_TOKEN | |
) | |
def save_query_data(query_id: str, query: str, image_path: str) -> None: | |
"""Save query data to Huggingface dataset""" | |
# Save query metadata | |
query_cache_dir = DATASET_DIR / query_id | |
query_cache_dir.mkdir(parents=True, exist_ok=True) | |
query_file = query_cache_dir / "query_metadata.json" | |
query_metadata = { | |
"query_id": query_id, | |
"query_text": query, | |
"datetime": time.strftime("%Y%m%d_%H%M%S"), | |
"image_path": image_path if image_path else None | |
} | |
print(f"Saving query metadata to {query_file}") | |
with query_file.open("w") as f: | |
json.dump(query_metadata, f, indent=4) | |
# # NOTE: As we are using the same name for the query cache directory as the dataset directory, | |
# # NOTE: we don't need to copy the content from the query cache directory to the query directory. | |
# # Copy all content from root_cache_dir to query_dir | |
# import shutil | |
# shutil.copytree(args.root_cache_dir, query_data_dir, dirs_exist_ok=True) | |
def save_feedback(query_id: str, feedback_type: str, feedback_text: str = None) -> None: | |
""" | |
Save user feedback to the query directory. | |
Args: | |
query_id: Unique identifier for the query | |
feedback_type: Type of feedback ('upvote', 'downvote', or 'comment') | |
feedback_text: Optional text feedback from user | |
""" | |
feedback_data_dir = DATASET_DIR / query_id | |
feedback_data_dir.mkdir(parents=True, exist_ok=True) | |
feedback_data = { | |
"query_id": query_id, | |
"feedback_type": feedback_type, | |
"feedback_text": feedback_text, | |
"datetime": time.strftime("%Y%m%d_%H%M%S") | |
} | |
# Save feedback in the query directory | |
feedback_file = feedback_data_dir / "feedback.json" | |
print(f"Saving feedback to {feedback_file}") | |
# If feedback file exists, update it | |
if feedback_file.exists(): | |
with feedback_file.open("r") as f: | |
existing_feedback = json.load(f) | |
# Convert to list if it's a single feedback entry | |
if not isinstance(existing_feedback, list): | |
existing_feedback = [existing_feedback] | |
existing_feedback.append(feedback_data) | |
feedback_data = existing_feedback | |
# Write feedback data | |
with feedback_file.open("w") as f: | |
json.dump(feedback_data, f, indent=4) | |
def save_steps_data(query_id: str, memory: Memory) -> None: | |
"""Save steps data to Huggingface dataset""" | |
steps_file = DATASET_DIR / query_id / "all_steps.json" | |
memory_actions = memory.get_actions() | |
memory_actions = make_json_serializable(memory_actions) # NOTE: make the memory actions serializable | |
print("Memory actions: ", memory_actions) | |
with steps_file.open("w") as f: | |
json.dump(memory_actions, f, indent=4) | |
def save_module_data(query_id: str, key: str, value: Any) -> None: | |
"""Save module data to Huggingface dataset""" | |
try: | |
key = key.replace(" ", "_").lower() | |
module_file = DATASET_DIR / query_id / f"{key}.json" | |
value = make_json_serializable(value) # NOTE: make the value serializable | |
with module_file.open("a") as f: | |
json.dump(value, f, indent=4) | |
except Exception as e: | |
print(f"Warning: Failed to save as JSON: {e}") | |
# Fallback to saving as text file | |
text_file = DATASET_DIR / query_id / f"{key}.txt" | |
try: | |
with text_file.open("a") as f: | |
f.write(str(value) + "\n") | |
print(f"Successfully saved as text file: {text_file}") | |
except Exception as e: | |
print(f"Error: Failed to save as text file: {e}") | |
########### End of Test Huggingface Dataset ########### | |
class Solver: | |
def __init__( | |
self, | |
planner, | |
memory, | |
executor, | |
task: str, | |
task_description: str, | |
output_types: str = "base,final,direct", | |
index: int = 0, | |
verbose: bool = True, | |
max_steps: int = 10, | |
max_time: int = 60, | |
query_cache_dir: str = "solver_cache" | |
): | |
self.planner = planner | |
self.memory = memory | |
self.executor = executor | |
self.task = task | |
self.task_description = task_description | |
self.index = index | |
self.verbose = verbose | |
self.max_steps = max_steps | |
self.max_time = max_time | |
self.query_cache_dir = query_cache_dir | |
self.output_types = output_types.lower().split(',') | |
assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'." | |
def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, api_key: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]: | |
""" | |
Streams intermediate thoughts and final responses for the problem-solving process based on user input. | |
Args: | |
user_query (str): The text query input from the user. | |
user_image (Image.Image): The uploaded image from the user (PIL Image object). | |
messages (list): A list of ChatMessage objects to store the streamed responses. | |
""" | |
if user_image: | |
# # Convert PIL Image to bytes (for processing) | |
# img_bytes_io = io.BytesIO() | |
# user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes | |
# img_bytes = img_bytes_io.getvalue() # Get bytes | |
# Use image paths instead of bytes, | |
# os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True) | |
# img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg') | |
img_path = os.path.join(self.query_cache_dir, 'query_image.jpg') | |
user_image.save(img_path) | |
else: | |
img_path = None | |
# Set tool cache directory | |
_tool_cache_dir = os.path.join(self.query_cache_dir, "tool_cache") # NOTE: This is the directory for tool cache | |
self.executor.set_query_cache_dir(_tool_cache_dir) # NOTE: set query cache directory | |
# Step 1: Display the received inputs | |
if user_image: | |
messages.append(ChatMessage(role="assistant", content=f"### π Received Query:\n{user_query}\n### πΌοΈ Image Uploaded")) | |
else: | |
messages.append(ChatMessage(role="assistant", content=f"### π Received Query:\n{user_query}")) | |
yield messages | |
# # Step 2: Add "thinking" status while processing | |
# messages.append(ChatMessage( | |
# role="assistant", | |
# content="", | |
# metadata={"title": "β³ Thinking: Processing input..."} | |
# )) | |
# [Step 3] Initialize problem-solving state | |
start_time = time.time() | |
step_count = 0 | |
json_data = {"query": user_query, "image": "Image received as bytes"} | |
messages.append(ChatMessage(role="assistant", content="<br>")) | |
messages.append(ChatMessage(role="assistant", content="### π Reasoning Steps from OctoTools (Deep Thinking...)")) | |
yield messages | |
# [Step 4] Query Analysis | |
query_analysis = self.planner.analyze_query(user_query, img_path) | |
json_data["query_analysis"] = query_analysis | |
query_analysis = query_analysis.replace("Concise Summary:", "**Concise Summary:**\n") | |
query_analysis = query_analysis.replace("Required Skills:", "**Required Skills:**") | |
query_analysis = query_analysis.replace("Relevant Tools:", "**Relevant Tools:**") | |
query_analysis = query_analysis.replace("Additional Considerations:", "**Additional Considerations:**") | |
messages.append(ChatMessage(role="assistant", | |
content=f"{query_analysis}", | |
metadata={"title": "### π Step 0: Query Analysis"})) | |
yield messages | |
# Save the query analysis data | |
query_analysis_data = { | |
"query_analysis": query_analysis, | |
"time": round(time.time() - start_time, 5) | |
} | |
save_module_data(QUERY_ID, "step_0_query_analysis", query_analysis_data) | |
# Execution loop (similar to your step-by-step solver) | |
while step_count < self.max_steps and (time.time() - start_time) < self.max_time: | |
step_count += 1 | |
messages.append(ChatMessage(role="OctoTools", | |
content=f"Generating the {step_count}-th step...", | |
metadata={"title": f"π Step {step_count}"})) | |
yield messages | |
# [Step 5] Generate the next step | |
next_step = self.planner.generate_next_step( | |
user_query, img_path, query_analysis, self.memory, step_count, self.max_steps | |
) | |
context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step) | |
step_data = { | |
"step_count": step_count, | |
"context": context, | |
"sub_goal": sub_goal, | |
"tool_name": tool_name, | |
"time": round(time.time() - start_time, 5) | |
} | |
save_module_data(QUERY_ID, f"step_{step_count}_action_prediction", step_data) | |
# Display the step information | |
messages.append(ChatMessage( | |
role="assistant", | |
content=f"**Context:** {context}\n\n**Sub-goal:** {sub_goal}\n\n**Tool:** `{tool_name}`", | |
metadata={"title": f"### π― Step {step_count}: Action Prediction ({tool_name})"})) | |
yield messages | |
# Handle tool execution or errors | |
if tool_name not in self.planner.available_tools: | |
messages.append(ChatMessage( | |
role="assistant", | |
content=f"β οΈ Error: Tool '{tool_name}' is not available.")) | |
yield messages | |
continue | |
# [Step 6-7] Generate and execute the tool command | |
tool_command = self.executor.generate_tool_command( | |
user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name] | |
) | |
analysis, explanation, command = self.executor.extract_explanation_and_command(tool_command) | |
result = self.executor.execute_tool_command(tool_name, command) | |
result = make_json_serializable(result) | |
# Display the ommand generation information | |
messages.append(ChatMessage( | |
role="assistant", | |
content=f"**Analysis:** {analysis}\n\n**Explanation:** {explanation}\n\n**Command:**\n```python\n{command}\n```", | |
metadata={"title": f"### π Step {step_count}: Command Generation ({tool_name})"})) | |
yield messages | |
# Save the command generation data | |
command_generation_data = { | |
"analysis": analysis, | |
"explanation": explanation, | |
"command": command, | |
"time": round(time.time() - start_time, 5) | |
} | |
save_module_data(QUERY_ID, f"step_{step_count}_command_generation", command_generation_data) | |
# Display the command execution result | |
messages.append(ChatMessage( | |
role="assistant", | |
content=f"**Result:**\n```json\n{json.dumps(result, indent=4)}\n```", | |
# content=f"**Result:**\n```json\n{result}\n```", | |
metadata={"title": f"### π οΈ Step {step_count}: Command Execution ({tool_name})"})) | |
yield messages | |
# Save the command execution data | |
command_execution_data = { | |
"result": result, | |
"time": round(time.time() - start_time, 5) | |
} | |
save_module_data(QUERY_ID, f"step_{step_count}_command_execution", command_execution_data) | |
# [Step 8] Memory update and stopping condition | |
self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result) | |
stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory) | |
conclusion = self.planner.extract_conclusion(stop_verification) | |
# Save the context verification data | |
context_verification_data = { | |
"stop_verification": stop_verification, | |
"conclusion": conclusion, | |
"time": round(time.time() - start_time, 5) | |
} | |
save_module_data(QUERY_ID, f"step_{step_count}_context_verification", context_verification_data) | |
# Display the context verification result | |
conclusion_emoji = "β " if conclusion == 'STOP' else "π" | |
messages.append(ChatMessage( | |
role="assistant", | |
content=f"**Analysis:** {analysis}\n\n**Conclusion:** `{conclusion}` {conclusion_emoji}", | |
metadata={"title": f"### π€ Step {step_count}: Context Verification"})) | |
yield messages | |
if conclusion == 'STOP': | |
break | |
# Step 7: Generate Final Output (if needed) | |
if 'direct' in self.output_types: | |
messages.append(ChatMessage(role="assistant", content="<br>")) | |
direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory) | |
messages.append(ChatMessage(role="assistant", content=f"### π Final Answer:\n{direct_output}")) | |
yield messages | |
# Save the direct output data | |
direct_output_data = { | |
"direct_output": direct_output, | |
"time": round(time.time() - start_time, 5) | |
} | |
save_module_data(QUERY_ID, "direct_output", direct_output_data) | |
if 'final' in self.output_types: | |
final_output = self.planner.generate_final_output(user_query, img_path, self.memory) # Disabled visibility for now | |
# messages.append(ChatMessage(role="assistant", content=f"π― Final Output:\n{final_output}")) | |
# yield messages | |
# Save the final output data | |
final_output_data = { | |
"final_output": final_output, | |
"time": round(time.time() - start_time, 5) | |
} | |
save_module_data(QUERY_ID, "final_output", final_output_data) | |
# Step 8: Completion Message | |
messages.append(ChatMessage(role="assistant", content="<br>")) | |
messages.append(ChatMessage(role="assistant", content="### β Query Solved!")) | |
messages.append(ChatMessage(role="assistant", content="How do you like the output from OctoTools π? Please give us your feedback below. \n\nπ If the answer is correct or the reasoning steps are helpful, please upvote the output. \nπ If it is incorrect or the reasoning steps are not helpful, please downvote the output. \nπ¬ If you have any suggestions or comments, please leave them below.\n\nThank you for using OctoTools! π")) | |
yield messages | |
def parse_arguments(): | |
parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.") | |
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.") | |
parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.") | |
parser.add_argument("--task", default="minitoolbench", help="Task to run.") | |
parser.add_argument("--task_description", default="", help="Task description.") | |
parser.add_argument( | |
"--output_types", | |
default="base,final,direct", | |
help="Comma-separated list of required outputs (base,final,direct)" | |
) | |
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.") | |
parser.add_argument("--root_cache_dir", default="solver_cache", help="Path to solver cache directory.") | |
parser.add_argument("--query_id", default=None, help="Query ID.") | |
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.") | |
# NOTE: Add new arguments | |
parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).") | |
parser.add_argument("--openai_api_source", default="we_provided", choices=["we_provided", "user_provided"], help="Source of OpenAI API key.") | |
return parser.parse_args() | |
def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_key=None, llm_model_engine=None, enabled_tools=None): | |
""" | |
Wrapper function to connect the solver to Gradio. | |
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates. | |
""" | |
# Generate Unique Query ID (Date and first 8 characters of UUID) | |
query_id = time.strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())[:8] # e.g, 20250217_062225_612f2474 | |
print(f"Query ID: {query_id}") | |
# NOTE: update the global variable to save the query ID | |
global QUERY_ID | |
QUERY_ID = query_id | |
# Create a directory for the query ID | |
query_cache_dir = os.path.join(DATASET_DIR.name, query_id) # NOTE | |
os.makedirs(query_cache_dir, exist_ok=True) | |
if api_key is None: | |
return [["assistant", "β οΈ Error: OpenAI API Key is required."]] | |
# Save the query data | |
save_query_data( | |
query_id=query_id, | |
query=user_query, | |
image_path=os.path.join(query_cache_dir, 'query_image.jpg') if user_image else None | |
) | |
# # Initialize Tools | |
# enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else [] | |
# # Hack enabled_tools | |
# enabled_tools = ["Generalist_Solution_Generator_Tool"] | |
# Instantiate Initializer | |
initializer = Initializer( | |
enabled_tools=enabled_tools, | |
model_string=llm_model_engine, | |
api_key=api_key | |
) | |
# Instantiate Planner | |
planner = Planner( | |
llm_engine_name=llm_model_engine, | |
toolbox_metadata=initializer.toolbox_metadata, | |
available_tools=initializer.available_tools, | |
api_key=api_key | |
) | |
# Instantiate Memory | |
memory = Memory() | |
# Instantiate Executor | |
executor = Executor( | |
llm_engine_name=llm_model_engine, | |
query_cache_dir=query_cache_dir, # NOTE | |
enable_signal=False, | |
api_key=api_key | |
) | |
# Instantiate Solver | |
solver = Solver( | |
planner=planner, | |
memory=memory, | |
executor=executor, | |
task=args.task, | |
task_description=args.task_description, | |
output_types=args.output_types, # Add new parameter | |
verbose=args.verbose, | |
max_steps=max_steps, | |
max_time=max_time, | |
query_cache_dir=query_cache_dir # NOTE | |
) | |
if solver is None: | |
return [["assistant", "β οΈ Error: Solver is not initialized. Please restart the application."]] | |
messages = [] # Initialize message list | |
for message_batch in solver.stream_solve_user_problem(user_query, user_image, api_key, messages): | |
yield [msg for msg in message_batch] # Ensure correct format for Gradio Chatbot | |
# Save steps | |
save_steps_data( | |
query_id=query_id, | |
memory=memory | |
) | |
def main(args): | |
#################### Gradio Interface #################### | |
with gr.Blocks() as demo: | |
# with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
# Theming https://www.gradio.app/guides/theming-guide | |
gr.Markdown("# π Chat with OctoTools: An Agentic Framework with Extensive Tools for Complex Reasoning") # Title | |
# gr.Markdown("[](https://octotools.github.io/)") # Title | |
gr.Markdown(""" | |
**OctoTools** is a training-free, user-friendly, and easily extensible open-source agentic framework designed to tackle complex reasoning across diverse domains. | |
It introduces standardized **tool cards** to encapsulate tool functionality, a **planner** for both high-level and low-level planning, and an **executor** to carry out tool usage. | |
[Website](https://octotools.github.io/) | | |
[Github](https://github.com/octotools/octotools) | | |
[arXiv](https://arxiv.org/abs/2502.11271) | | |
[Paper](https://arxiv.org/pdf/2502.11271) | | |
[Daily Paper](https://huggingface.co/papers/2502.11271) | | |
[Tool Cards](https://octotools.github.io/#tool-cards) | | |
[Example Visualizations](https://octotools.github.io/#visualization) | | |
[Coverage](https://x.com/lupantech/status/1892260474320015861) | | |
[Discord](https://discord.gg/NMJx66DC) | |
""") | |
with gr.Row(): | |
# Left column for settings | |
with gr.Column(scale=1): | |
with gr.Row(): | |
if args.openai_api_source == "user_provided": | |
print("Using API key from user input.") | |
api_key = gr.Textbox( | |
show_label=True, | |
placeholder="Your API key will not be stored in any way.", | |
type="password", | |
label="OpenAI API Key", | |
# container=False | |
) | |
else: | |
print(f"Using local API key from environment variable: ...{os.getenv('OPENAI_API_KEY')[-4:]}") | |
api_key = gr.Textbox( | |
value=os.getenv("OPENAI_API_KEY"), | |
visible=False, | |
interactive=False | |
) | |
with gr.Row(): | |
llm_model_engine = gr.Dropdown( | |
choices=["gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13", | |
"gpt-4o-mini", "gpt-4o-mini-2024-07-18"], | |
value="gpt-4o", | |
label="LLM Model" | |
) | |
with gr.Row(): | |
max_steps = gr.Slider(value=8, minimum=1, maximum=10, step=1, label="Max Steps") | |
with gr.Row(): | |
max_time = gr.Slider(value=240, minimum=60, maximum=300, step=30, label="Max Time (seconds)") | |
with gr.Row(): | |
# Container for tools section | |
with gr.Column(): | |
# First row for checkbox group | |
enabled_tools = gr.CheckboxGroup( | |
choices=all_tools, | |
value=all_tools, | |
label="Selected Tools", | |
) | |
# Second row for buttons | |
with gr.Row(): | |
enable_all_btn = gr.Button("Select All Tools") | |
disable_all_btn = gr.Button("Clear All Tools") | |
# Add click handlers for the buttons | |
enable_all_btn.click( | |
lambda: all_tools, | |
outputs=enabled_tools | |
) | |
disable_all_btn.click( | |
lambda: [], | |
outputs=enabled_tools | |
) | |
with gr.Column(scale=5): | |
with gr.Row(): | |
# Middle column for the query | |
with gr.Column(scale=2): | |
user_image = gr.Image(type="pil", label="Upload an Image (Optional)", height=500) # Accepts multiple formats | |
with gr.Row(): | |
user_query = gr.Textbox( placeholder="Type your question here...", label="Question (Required)") | |
with gr.Row(): | |
run_button = gr.Button("π Submit and Run", variant="primary") # Run button with blue color | |
# Right column for the output | |
with gr.Column(scale=3): | |
chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output", height=500) | |
# TODO: Add actions to the buttons | |
with gr.Row(elem_id="buttons") as button_row: | |
upvote_btn = gr.Button(value="π Upvote", interactive=True, variant="primary") # TODO | |
downvote_btn = gr.Button(value="π Downvote", interactive=True, variant="primary") # TODO | |
# stop_btn = gr.Button(value="βοΈ Stop", interactive=True) # TODO | |
# clear_btn = gr.Button(value="ποΈ Clear history", interactive=True) # TODO | |
# TODO: Add comment textbox | |
with gr.Row(): | |
comment_textbox = gr.Textbox(value="", | |
placeholder="Feel free to add any comments here. Thanks for using OctoTools!", | |
label="π¬ Comment (Type and press Enter to submit.)", interactive=True) # TODO | |
# Update the button click handlers | |
upvote_btn.click( | |
fn=lambda: save_feedback(QUERY_ID, "upvote"), | |
inputs=[], | |
outputs=[] | |
) | |
downvote_btn.click( | |
fn=lambda: save_feedback(QUERY_ID, "downvote"), | |
inputs=[], | |
outputs=[] | |
) | |
# Add handler for comment submission | |
comment_textbox.submit( | |
fn=lambda comment: save_feedback(QUERY_ID, "comment", comment), | |
inputs=[comment_textbox], | |
outputs=[] | |
) | |
# Bottom row for examples | |
with gr.Row(): | |
with gr.Column(scale=5): | |
gr.Markdown("") | |
gr.Markdown(""" | |
## π‘ Try these examples with suggested tools. | |
""") | |
gr.Examples( | |
examples=[ | |
# [ None, "Who is the president of the United States?", ["Google_Search_Tool"]], | |
[ "Logical Reasoning", | |
None, | |
"How many r letters are in the word strawberry?", | |
["Generalist_Solution_Generator_Tool", "Python_Code_Generator_Tool"], | |
"3"], | |
[ "Web Search", | |
None, | |
"What's up with the upcoming Apple Launch? Any rumors?", | |
["Generalist_Solution_Generator_Tool", "Google_Search_Tool", "Wikipedia_Knowledge_Searcher_Tool", "URL_Text_Extractor_Tool"], | |
"Apple's February 19, 2025, event may feature the iPhone SE 4, new iPads, accessories, and rumored iPhone 17 and Apple Watch Series 10."], | |
[ "Arithmetic Reasoning", | |
None, | |
"Which is bigger, 9.11 or 9.9?", | |
["Generalist_Solution_Generator_Tool", "Python_Code_Generator_Tool"], | |
"9.9"], | |
[ "Multi-step Reasoning", | |
None, | |
"Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic operations (+, -, Γ, /) and parentheses. For example, one solution for [1, 2, 3, 4] is (1+2+3)Γ4.", ["Python_Code_Generator_Tool"], | |
"((1 + 1) * 9) + 6"], | |
[ "Scientific Research", | |
None, | |
"What are the research trends in tool agents with large language models for scientific discovery? Please consider the latest literature from ArXiv, PubMed, Nature, and news sources.", ["ArXiv_Paper_Searcher_Tool", "Pubmed_Search_Tool", "Nature_News_Fetcher_Tool"], | |
"Open-ended question. No reference answer."], | |
[ "Visual Perception", | |
"examples/baseball.png", | |
"How many baseballs are there?", | |
["Object_Detector_Tool"], | |
"20"], | |
[ "Visual Reasoning", | |
"examples/rotting_kiwi.png", | |
"You are given a 3 x 3 grid in which each cell can contain either no kiwi, one fresh kiwi, or one rotten kiwi. Every minute, any fresh kiwi that is 4-directionally adjacent to a rotten kiwi also becomes rotten. What is the minimum number of minutes that must elapse until no cell has a fresh kiwi?", ["Image_Captioner_Tool"], | |
"4 minutes"], | |
[ "Medical Image Analysis", | |
"examples/lung.jpg", | |
"What is the organ on the left side of this image?", | |
["Image_Captioner_Tool", "Relevant_Patch_Zoomer_Tool"], | |
"Lung"], | |
[ "Pathology Diagnosis", | |
"examples/pathology.jpg", | |
"What are the cell types in this image?", | |
["Generalist_Solution_Generator_Tool", "Image_Captioner_Tool", "Relevant_Patch_Zoomer_Tool"], | |
"Need expert insights."], | |
], | |
inputs=[gr.Textbox(label="Category", visible=False), user_image, user_query, enabled_tools, gr.Textbox(label="Reference Answer", visible=False)], | |
# label="Try these examples with suggested tools." | |
) | |
# Link button click to function | |
run_button.click( | |
fn=solve_problem_gradio, | |
inputs=[user_query, user_image, max_steps, max_time, api_key, llm_model_engine, enabled_tools], | |
outputs=chatbot_output | |
) | |
#################### Gradio Interface #################### | |
# Launch the Gradio app | |
demo.launch() | |
if __name__ == "__main__": | |
args = parse_arguments() | |
# All tools | |
all_tools = [ | |
"Generalist_Solution_Generator_Tool", | |
"Image_Captioner_Tool", | |
"Object_Detector_Tool", | |
"Relevant_Patch_Zoomer_Tool", | |
"Text_Detector_Tool", | |
"Python_Code_Generator_Tool", | |
"ArXiv_Paper_Searcher_Tool", | |
"Google_Search_Tool", | |
"Nature_News_Fetcher_Tool", | |
"Pubmed_Search_Tool", | |
"URL_Text_Extractor_Tool", | |
"Wikipedia_Knowledge_Searcher_Tool" | |
] | |
args.enabled_tools = ",".join(all_tools) | |
# NOTE: Use the same name for the query cache directory as the dataset directory | |
args.root_cache_dir = DATASET_DIR.name | |
main(args) | |