Spaces:
Running
Running
added user feedback
Browse files- app.py +57 -19
- app_v3_0216.py +0 -380
- octotools/models/initializer.py +2 -1
- utils.py +26 -0
app.py
CHANGED
@@ -22,6 +22,8 @@ from octotools.models.memory import Memory
|
|
22 |
from octotools.models.executor import Executor
|
23 |
from octotools.models.utils import make_json_serializable
|
24 |
|
|
|
|
|
25 |
|
26 |
class Solver:
|
27 |
def __init__(
|
@@ -36,7 +38,6 @@ class Solver:
|
|
36 |
verbose: bool = True,
|
37 |
max_steps: int = 10,
|
38 |
max_time: int = 60,
|
39 |
-
output_json_dir: str = "results",
|
40 |
root_cache_dir: str = "cache"
|
41 |
):
|
42 |
self.planner = planner
|
@@ -48,7 +49,6 @@ class Solver:
|
|
48 |
self.verbose = verbose
|
49 |
self.max_steps = max_steps
|
50 |
self.max_time = max_time
|
51 |
-
self.output_json_dir = output_json_dir
|
52 |
self.root_cache_dir = root_cache_dir
|
53 |
|
54 |
self.output_types = output_types.lower().split(',')
|
@@ -72,14 +72,16 @@ class Solver:
|
|
72 |
# img_bytes = img_bytes_io.getvalue() # Get bytes
|
73 |
|
74 |
# Use image paths instead of bytes,
|
75 |
-
os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
|
76 |
-
img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
|
|
|
|
|
77 |
user_image.save(img_path)
|
78 |
else:
|
79 |
img_path = None
|
80 |
|
81 |
-
# Set
|
82 |
-
_cache_dir = os.path.join(self.root_cache_dir)
|
83 |
self.executor.set_query_cache_dir(_cache_dir)
|
84 |
|
85 |
# Step 1: Display the received inputs
|
@@ -178,10 +180,12 @@ class Solver:
|
|
178 |
yield messages
|
179 |
|
180 |
# Step 8: Completion Message
|
181 |
-
messages.append(ChatMessage(role="assistant", content="✅ Problem-solving process
|
182 |
yield messages
|
183 |
|
184 |
|
|
|
|
|
185 |
def parse_arguments():
|
186 |
parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.")
|
187 |
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
|
@@ -196,8 +200,10 @@ def parse_arguments():
|
|
196 |
)
|
197 |
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
|
198 |
parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
|
199 |
-
parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
|
200 |
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
|
|
|
|
|
|
|
201 |
return parser.parse_args()
|
202 |
|
203 |
|
@@ -207,6 +213,15 @@ def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_
|
|
207 |
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
|
208 |
"""
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
if api_key is None:
|
211 |
return [["assistant", "⚠️ Error: OpenAI API Key is required."]]
|
212 |
|
@@ -237,7 +252,7 @@ def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_
|
|
237 |
# Instantiate Executor
|
238 |
executor = Executor(
|
239 |
llm_engine_name=llm_model_engine,
|
240 |
-
root_cache_dir=args.root_cache_dir,
|
241 |
enable_signal=False,
|
242 |
api_key=api_key
|
243 |
)
|
@@ -253,8 +268,7 @@ def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_
|
|
253 |
verbose=args.verbose,
|
254 |
max_steps=max_steps,
|
255 |
max_time=max_time,
|
256 |
-
|
257 |
-
root_cache_dir=args.root_cache_dir
|
258 |
)
|
259 |
|
260 |
if solver is None:
|
@@ -352,23 +366,47 @@ def main(args):
|
|
352 |
# Right column for the output
|
353 |
with gr.Column(scale=3):
|
354 |
chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output (Deep Thinking)", height=500)
|
355 |
-
# chatbot_output.like(lambda x: print(f"User liked: {x}"))
|
356 |
|
357 |
# TODO: Add actions to the buttons
|
358 |
with gr.Row(elem_id="buttons") as button_row:
|
359 |
-
upvote_btn = gr.Button(value="👍 Upvote", interactive=True, variant="primary")
|
360 |
-
downvote_btn = gr.Button(value="👎 Downvote", interactive=True, variant="primary")
|
361 |
-
stop_btn = gr.Button(value="⛔️ Stop", interactive=True)
|
362 |
-
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
|
363 |
|
|
|
364 |
with gr.Row():
|
365 |
comment_textbox = gr.Textbox(value="",
|
366 |
placeholder="Feel free to add any comments here. Thanks for using OctoTools!",
|
367 |
-
label="💬 Comment", interactive=True)
|
368 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
# Bottom row for examples
|
370 |
with gr.Row():
|
371 |
with gr.Column(scale=5):
|
|
|
|
|
|
|
|
|
372 |
gr.Examples(
|
373 |
examples=[
|
374 |
[ None, "Who is the president of the United States?", ["Google_Search_Tool"]],
|
@@ -383,7 +421,7 @@ def main(args):
|
|
383 |
|
384 |
],
|
385 |
inputs=[user_image, user_query, enabled_tools],
|
386 |
-
label="Try these examples with suggested tools."
|
387 |
)
|
388 |
|
389 |
# Link button click to function
|
@@ -410,8 +448,8 @@ if __name__ == "__main__":
|
|
410 |
|
411 |
"Image_Captioner_Tool",
|
412 |
"Object_Detector_Tool",
|
413 |
-
"Text_Detector_Tool",
|
414 |
"Relevant_Patch_Zoomer_Tool",
|
|
|
415 |
|
416 |
"Python_Code_Generator_Tool",
|
417 |
|
|
|
22 |
from octotools.models.executor import Executor
|
23 |
from octotools.models.utils import make_json_serializable
|
24 |
|
25 |
+
from utils import save_feedback
|
26 |
+
|
27 |
|
28 |
class Solver:
|
29 |
def __init__(
|
|
|
38 |
verbose: bool = True,
|
39 |
max_steps: int = 10,
|
40 |
max_time: int = 60,
|
|
|
41 |
root_cache_dir: str = "cache"
|
42 |
):
|
43 |
self.planner = planner
|
|
|
49 |
self.verbose = verbose
|
50 |
self.max_steps = max_steps
|
51 |
self.max_time = max_time
|
|
|
52 |
self.root_cache_dir = root_cache_dir
|
53 |
|
54 |
self.output_types = output_types.lower().split(',')
|
|
|
72 |
# img_bytes = img_bytes_io.getvalue() # Get bytes
|
73 |
|
74 |
# Use image paths instead of bytes,
|
75 |
+
# os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
|
76 |
+
# img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
|
77 |
+
|
78 |
+
img_path = os.path.join(self.root_cache_dir, 'query_image.jpg')
|
79 |
user_image.save(img_path)
|
80 |
else:
|
81 |
img_path = None
|
82 |
|
83 |
+
# Set tool cache directory
|
84 |
+
_cache_dir = os.path.join(self.root_cache_dir, "tool_cache") # NOTE: This is the directory for tool cache
|
85 |
self.executor.set_query_cache_dir(_cache_dir)
|
86 |
|
87 |
# Step 1: Display the received inputs
|
|
|
180 |
yield messages
|
181 |
|
182 |
# Step 8: Completion Message
|
183 |
+
messages.append(ChatMessage(role="assistant", content="✅ Problem-solving process completed."))
|
184 |
yield messages
|
185 |
|
186 |
|
187 |
+
|
188 |
+
|
189 |
def parse_arguments():
|
190 |
parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.")
|
191 |
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
|
|
|
200 |
)
|
201 |
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
|
202 |
parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
|
|
|
203 |
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
|
204 |
+
|
205 |
+
# NOTE: Add new arguments
|
206 |
+
parser.add_argument("--openai_api_source", default="we_provided", choices=["we_provided", "user_provided"], help="Source of OpenAI API key.")
|
207 |
return parser.parse_args()
|
208 |
|
209 |
|
|
|
213 |
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
|
214 |
"""
|
215 |
|
216 |
+
# Generate shorter ID (Date and first 8 characters of UUID)
|
217 |
+
query_id = time.strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())[:8] # e.g, 20250217_612f2474
|
218 |
+
print(f"Query ID: {query_id}")
|
219 |
+
|
220 |
+
# Create a directory for the query ID
|
221 |
+
query_dir = os.path.join(args.root_cache_dir, query_id)
|
222 |
+
os.makedirs(query_dir, exist_ok=True)
|
223 |
+
args.root_cache_dir = query_dir
|
224 |
+
|
225 |
if api_key is None:
|
226 |
return [["assistant", "⚠️ Error: OpenAI API Key is required."]]
|
227 |
|
|
|
252 |
# Instantiate Executor
|
253 |
executor = Executor(
|
254 |
llm_engine_name=llm_model_engine,
|
255 |
+
root_cache_dir=args.root_cache_dir, # NOTE
|
256 |
enable_signal=False,
|
257 |
api_key=api_key
|
258 |
)
|
|
|
268 |
verbose=args.verbose,
|
269 |
max_steps=max_steps,
|
270 |
max_time=max_time,
|
271 |
+
root_cache_dir=args.root_cache_dir # NOTE
|
|
|
272 |
)
|
273 |
|
274 |
if solver is None:
|
|
|
366 |
# Right column for the output
|
367 |
with gr.Column(scale=3):
|
368 |
chatbot_output = gr.Chatbot(type="messages", label="Step-wise Problem-Solving Output (Deep Thinking)", height=500)
|
|
|
369 |
|
370 |
# TODO: Add actions to the buttons
|
371 |
with gr.Row(elem_id="buttons") as button_row:
|
372 |
+
upvote_btn = gr.Button(value="👍 Upvote", interactive=True, variant="primary") # TODO
|
373 |
+
downvote_btn = gr.Button(value="👎 Downvote", interactive=True, variant="primary") # TODO
|
374 |
+
stop_btn = gr.Button(value="⛔️ Stop", interactive=True) # TODO
|
375 |
+
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True) # TODO
|
376 |
|
377 |
+
# TODO: Add comment textbox
|
378 |
with gr.Row():
|
379 |
comment_textbox = gr.Textbox(value="",
|
380 |
placeholder="Feel free to add any comments here. Thanks for using OctoTools!",
|
381 |
+
label="💬 Comment (Type and press Enter to submit.)", interactive=True) # TODO
|
382 |
|
383 |
+
# Update the button click handlers
|
384 |
+
upvote_btn.click(
|
385 |
+
fn=lambda: save_feedback(args.root_cache_dir, "upvote"),
|
386 |
+
inputs=[],
|
387 |
+
outputs=[]
|
388 |
+
)
|
389 |
+
|
390 |
+
downvote_btn.click(
|
391 |
+
fn=lambda: save_feedback(args.root_cache_dir, "downvote"),
|
392 |
+
inputs=[],
|
393 |
+
outputs=[]
|
394 |
+
)
|
395 |
+
|
396 |
+
# Add handler for comment submission
|
397 |
+
comment_textbox.submit(
|
398 |
+
fn=lambda comment: save_feedback(args.root_cache_dir, comment),
|
399 |
+
inputs=[comment_textbox],
|
400 |
+
outputs=[]
|
401 |
+
)
|
402 |
+
|
403 |
# Bottom row for examples
|
404 |
with gr.Row():
|
405 |
with gr.Column(scale=5):
|
406 |
+
gr.Markdown("")
|
407 |
+
gr.Markdown("""
|
408 |
+
## 💡 Try these examples with suggested tools.
|
409 |
+
""")
|
410 |
gr.Examples(
|
411 |
examples=[
|
412 |
[ None, "Who is the president of the United States?", ["Google_Search_Tool"]],
|
|
|
421 |
|
422 |
],
|
423 |
inputs=[user_image, user_query, enabled_tools],
|
424 |
+
# label="Try these examples with suggested tools."
|
425 |
)
|
426 |
|
427 |
# Link button click to function
|
|
|
448 |
|
449 |
"Image_Captioner_Tool",
|
450 |
"Object_Detector_Tool",
|
|
|
451 |
"Relevant_Patch_Zoomer_Tool",
|
452 |
+
"Text_Detector_Tool",
|
453 |
|
454 |
"Python_Code_Generator_Tool",
|
455 |
|
app_v3_0216.py
DELETED
@@ -1,380 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import json
|
4 |
-
import argparse
|
5 |
-
import time
|
6 |
-
import io
|
7 |
-
import uuid
|
8 |
-
from PIL import Image
|
9 |
-
from typing import List, Dict, Any, Iterator
|
10 |
-
|
11 |
-
import gradio as gr
|
12 |
-
from gradio import ChatMessage
|
13 |
-
|
14 |
-
# Add the project root to the Python path
|
15 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
16 |
-
project_root = os.path.dirname(os.path.dirname(os.path.dirname(current_dir)))
|
17 |
-
sys.path.insert(0, project_root)
|
18 |
-
|
19 |
-
from octotools.models.initializer import Initializer
|
20 |
-
from octotools.models.planner import Planner
|
21 |
-
from octotools.models.memory import Memory
|
22 |
-
from octotools.models.executor import Executor
|
23 |
-
from octotools.models.utils import make_json_serializable
|
24 |
-
|
25 |
-
|
26 |
-
class Solver:
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
planner,
|
30 |
-
memory,
|
31 |
-
executor,
|
32 |
-
task: str,
|
33 |
-
task_description: str,
|
34 |
-
output_types: str = "base,final,direct",
|
35 |
-
index: int = 0,
|
36 |
-
verbose: bool = True,
|
37 |
-
max_steps: int = 10,
|
38 |
-
max_time: int = 60,
|
39 |
-
output_json_dir: str = "results",
|
40 |
-
root_cache_dir: str = "cache"
|
41 |
-
):
|
42 |
-
self.planner = planner
|
43 |
-
self.memory = memory
|
44 |
-
self.executor = executor
|
45 |
-
self.task = task
|
46 |
-
self.task_description = task_description
|
47 |
-
self.index = index
|
48 |
-
self.verbose = verbose
|
49 |
-
self.max_steps = max_steps
|
50 |
-
self.max_time = max_time
|
51 |
-
self.output_json_dir = output_json_dir
|
52 |
-
self.root_cache_dir = root_cache_dir
|
53 |
-
|
54 |
-
self.output_types = output_types.lower().split(',')
|
55 |
-
assert all(output_type in ["base", "final", "direct"] for output_type in self.output_types), "Invalid output type. Supported types are 'base', 'final', 'direct'."
|
56 |
-
|
57 |
-
|
58 |
-
def stream_solve_user_problem(self, user_query: str, user_image: Image.Image, api_key: str, messages: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
|
59 |
-
"""
|
60 |
-
Streams intermediate thoughts and final responses for the problem-solving process based on user input.
|
61 |
-
|
62 |
-
Args:
|
63 |
-
user_query (str): The text query input from the user.
|
64 |
-
user_image (Image.Image): The uploaded image from the user (PIL Image object).
|
65 |
-
messages (list): A list of ChatMessage objects to store the streamed responses.
|
66 |
-
"""
|
67 |
-
|
68 |
-
if user_image:
|
69 |
-
# # Convert PIL Image to bytes (for processing)
|
70 |
-
# img_bytes_io = io.BytesIO()
|
71 |
-
# user_image.save(img_bytes_io, format="PNG") # Convert image to PNG bytes
|
72 |
-
# img_bytes = img_bytes_io.getvalue() # Get bytes
|
73 |
-
|
74 |
-
# Use image paths instead of bytes,
|
75 |
-
os.makedirs(os.path.join(self.root_cache_dir, 'images'), exist_ok=True)
|
76 |
-
img_path = os.path.join(self.root_cache_dir, 'images', str(uuid.uuid4()) + '.jpg')
|
77 |
-
user_image.save(img_path)
|
78 |
-
else:
|
79 |
-
img_path = None
|
80 |
-
|
81 |
-
# Set query cache
|
82 |
-
_cache_dir = os.path.join(self.root_cache_dir)
|
83 |
-
self.executor.set_query_cache_dir(_cache_dir)
|
84 |
-
|
85 |
-
# Step 1: Display the received inputs
|
86 |
-
if user_image:
|
87 |
-
messages.append(ChatMessage(role="assistant", content=f"📝 Received Query: {user_query}\n🖼️ Image Uploaded"))
|
88 |
-
else:
|
89 |
-
messages.append(ChatMessage(role="assistant", content=f"📝 Received Query: {user_query}"))
|
90 |
-
yield messages
|
91 |
-
|
92 |
-
# # Step 2: Add "thinking" status while processing
|
93 |
-
# messages.append(ChatMessage(
|
94 |
-
# role="assistant",
|
95 |
-
# content="",
|
96 |
-
# metadata={"title": "⏳ Thinking: Processing input..."}
|
97 |
-
# ))
|
98 |
-
|
99 |
-
# Step 3: Initialize problem-solving state
|
100 |
-
start_time = time.time()
|
101 |
-
step_count = 0
|
102 |
-
json_data = {"query": user_query, "image": "Image received as bytes"}
|
103 |
-
|
104 |
-
# Step 4: Query Analysis
|
105 |
-
query_analysis = self.planner.analyze_query(user_query, img_path)
|
106 |
-
json_data["query_analysis"] = query_analysis
|
107 |
-
messages.append(ChatMessage(role="assistant",
|
108 |
-
content=f"{query_analysis}",
|
109 |
-
metadata={"title": "🔍 Query Analysis"}))
|
110 |
-
yield messages
|
111 |
-
|
112 |
-
# Step 5: Execution loop (similar to your step-by-step solver)
|
113 |
-
while step_count < self.max_steps and (time.time() - start_time) < self.max_time:
|
114 |
-
step_count += 1
|
115 |
-
# messages.append(ChatMessage(role="assistant",
|
116 |
-
# content=f"Generating next step...",
|
117 |
-
# metadata={"title": f"🔄 Step {step_count}"}))
|
118 |
-
yield messages
|
119 |
-
|
120 |
-
# Generate the next step
|
121 |
-
next_step = self.planner.generate_next_step(
|
122 |
-
user_query, img_path, query_analysis, self.memory, step_count, self.max_steps
|
123 |
-
)
|
124 |
-
context, sub_goal, tool_name = self.planner.extract_context_subgoal_and_tool(next_step)
|
125 |
-
|
126 |
-
# Display the step information
|
127 |
-
messages.append(ChatMessage(
|
128 |
-
role="assistant",
|
129 |
-
content=f"- Context: {context}\n- Sub-goal: {sub_goal}\n- Tool: {tool_name}",
|
130 |
-
metadata={"title": f"📌 Step {step_count}: {tool_name}"}
|
131 |
-
))
|
132 |
-
yield messages
|
133 |
-
|
134 |
-
# Handle tool execution or errors
|
135 |
-
if tool_name not in self.planner.available_tools:
|
136 |
-
messages.append(ChatMessage(
|
137 |
-
role="assistant",
|
138 |
-
content=f"⚠️ Error: Tool '{tool_name}' is not available."))
|
139 |
-
yield messages
|
140 |
-
continue
|
141 |
-
|
142 |
-
# Execute the tool command
|
143 |
-
tool_command = self.executor.generate_tool_command(
|
144 |
-
user_query, img_path, context, sub_goal, tool_name, self.planner.toolbox_metadata[tool_name]
|
145 |
-
)
|
146 |
-
explanation, command = self.executor.extract_explanation_and_command(tool_command)
|
147 |
-
result = self.executor.execute_tool_command(tool_name, command)
|
148 |
-
result = make_json_serializable(result)
|
149 |
-
|
150 |
-
messages.append(ChatMessage(
|
151 |
-
role="assistant",
|
152 |
-
content=f"{json.dumps(result, indent=4)}",
|
153 |
-
metadata={"title": f"✅ Step {step_count} Result: {tool_name}"}))
|
154 |
-
yield messages
|
155 |
-
|
156 |
-
# Step 6: Memory update and stopping condition
|
157 |
-
self.memory.add_action(step_count, tool_name, sub_goal, tool_command, result)
|
158 |
-
stop_verification = self.planner.verificate_memory(user_query, img_path, query_analysis, self.memory)
|
159 |
-
conclusion = self.planner.extract_conclusion(stop_verification)
|
160 |
-
|
161 |
-
messages.append(ChatMessage(
|
162 |
-
role="assistant",
|
163 |
-
content=f"🛑 Step {step_count} Conclusion: {conclusion}"))
|
164 |
-
yield messages
|
165 |
-
|
166 |
-
if conclusion == 'STOP':
|
167 |
-
break
|
168 |
-
|
169 |
-
# Step 7: Generate Final Output (if needed)
|
170 |
-
if 'final' in self.output_types:
|
171 |
-
final_output = self.planner.generate_final_output(user_query, img_path, self.memory)
|
172 |
-
messages.append(ChatMessage(role="assistant", content=f"🎯 Final Output:\n{final_output}"))
|
173 |
-
yield messages
|
174 |
-
|
175 |
-
if 'direct' in self.output_types:
|
176 |
-
direct_output = self.planner.generate_direct_output(user_query, img_path, self.memory)
|
177 |
-
messages.append(ChatMessage(role="assistant", content=f"🔹 Direct Output:\n{direct_output}"))
|
178 |
-
yield messages
|
179 |
-
|
180 |
-
# Step 8: Completion Message
|
181 |
-
messages.append(ChatMessage(role="assistant", content="✅ Problem-solving process complete."))
|
182 |
-
yield messages
|
183 |
-
|
184 |
-
|
185 |
-
def parse_arguments():
|
186 |
-
parser = argparse.ArgumentParser(description="Run the OctoTools demo with specified parameters.")
|
187 |
-
parser.add_argument("--llm_engine_name", default="gpt-4o", help="LLM engine name.")
|
188 |
-
parser.add_argument("--max_tokens", type=int, default=2000, help="Maximum tokens for LLM generation.")
|
189 |
-
parser.add_argument("--run_baseline_only", type=bool, default=False, help="Run only the baseline (no toolbox).")
|
190 |
-
parser.add_argument("--task", default="minitoolbench", help="Task to run.")
|
191 |
-
parser.add_argument("--task_description", default="", help="Task description.")
|
192 |
-
parser.add_argument(
|
193 |
-
"--output_types",
|
194 |
-
default="base,final,direct",
|
195 |
-
help="Comma-separated list of required outputs (base,final,direct)"
|
196 |
-
)
|
197 |
-
parser.add_argument("--enabled_tools", default="Generalist_Solution_Generator_Tool", help="List of enabled tools.")
|
198 |
-
parser.add_argument("--root_cache_dir", default="demo_solver_cache", help="Path to solver cache directory.")
|
199 |
-
parser.add_argument("--output_json_dir", default="demo_results", help="Path to output JSON directory.")
|
200 |
-
parser.add_argument("--verbose", type=bool, default=True, help="Enable verbose output.")
|
201 |
-
return parser.parse_args()
|
202 |
-
|
203 |
-
|
204 |
-
def solve_problem_gradio(user_query, user_image, max_steps=10, max_time=60, api_key=None, llm_model_engine=None, enabled_tools=None):
|
205 |
-
"""
|
206 |
-
Wrapper function to connect the solver to Gradio.
|
207 |
-
Streams responses from `solver.stream_solve_user_problem` for real-time UI updates.
|
208 |
-
"""
|
209 |
-
|
210 |
-
if api_key is None:
|
211 |
-
return [["assistant", "⚠️ Error: OpenAI API Key is required."]]
|
212 |
-
|
213 |
-
# Initialize Tools
|
214 |
-
enabled_tools = args.enabled_tools.split(",") if args.enabled_tools else []
|
215 |
-
|
216 |
-
# Hack enabled_tools
|
217 |
-
enabled_tools = ["Generalist_Solution_Generator_Tool"]
|
218 |
-
# Instantiate Initializer
|
219 |
-
initializer = Initializer(
|
220 |
-
enabled_tools=enabled_tools,
|
221 |
-
model_string=llm_model_engine,
|
222 |
-
api_key=api_key
|
223 |
-
)
|
224 |
-
|
225 |
-
# Instantiate Planner
|
226 |
-
planner = Planner(
|
227 |
-
llm_engine_name=llm_model_engine,
|
228 |
-
toolbox_metadata=initializer.toolbox_metadata,
|
229 |
-
available_tools=initializer.available_tools,
|
230 |
-
api_key=api_key
|
231 |
-
)
|
232 |
-
|
233 |
-
# Instantiate Memory
|
234 |
-
memory = Memory()
|
235 |
-
|
236 |
-
# Instantiate Executor
|
237 |
-
executor = Executor(
|
238 |
-
llm_engine_name=llm_model_engine,
|
239 |
-
root_cache_dir=args.root_cache_dir,
|
240 |
-
enable_signal=False,
|
241 |
-
api_key=api_key
|
242 |
-
)
|
243 |
-
|
244 |
-
# Instantiate Solver
|
245 |
-
solver = Solver(
|
246 |
-
planner=planner,
|
247 |
-
memory=memory,
|
248 |
-
executor=executor,
|
249 |
-
task=args.task,
|
250 |
-
task_description=args.task_description,
|
251 |
-
output_types=args.output_types, # Add new parameter
|
252 |
-
verbose=args.verbose,
|
253 |
-
max_steps=max_steps,
|
254 |
-
max_time=max_time,
|
255 |
-
output_json_dir=args.output_json_dir,
|
256 |
-
root_cache_dir=args.root_cache_dir
|
257 |
-
)
|
258 |
-
|
259 |
-
if solver is None:
|
260 |
-
return [["assistant", "⚠️ Error: Solver is not initialized. Please restart the application."]]
|
261 |
-
|
262 |
-
messages = [] # Initialize message list
|
263 |
-
for message_batch in solver.stream_solve_user_problem(user_query, user_image, api_key, messages):
|
264 |
-
yield [msg for msg in message_batch] # Ensure correct format for Gradio Chatbot
|
265 |
-
|
266 |
-
|
267 |
-
def main(args):
|
268 |
-
#################### Gradio Interface ####################
|
269 |
-
with gr.Blocks() as demo:
|
270 |
-
gr.Markdown("# 🐙 Chat with OctoTools: An Agentic Framework for Complex Reasoning") # Title
|
271 |
-
# gr.Markdown("[](https://octotools.github.io/)") # Title
|
272 |
-
gr.Markdown("""
|
273 |
-
**OctoTools** is a training-free, user-friendly, and easily extensible open-source agentic framework designed to tackle complex reasoning across diverse domains.
|
274 |
-
It introduces standardized **tool cards** to encapsulate tool functionality, a **planner** for both high-level and low-level planning, and an **executor** to carry out tool usage.
|
275 |
-
|
276 |
-
[Website](https://octotools.github.io/) |
|
277 |
-
[Github](https://github.com/octotools/octotools) |
|
278 |
-
[arXiv](https://github.com/octotools/octotools/assets/paper.pdf) |
|
279 |
-
[Paper](https://github.com/octotools/octotools/assets/paper.pdf) |
|
280 |
-
[Tool Cards](https://octotools.github.io/#tool-cards) |
|
281 |
-
[Example Visualizations](https://octotools.github.io/#visualization)
|
282 |
-
""")
|
283 |
-
|
284 |
-
with gr.Row():
|
285 |
-
# Left column for settings
|
286 |
-
with gr.Column(scale=1):
|
287 |
-
with gr.Row():
|
288 |
-
api_key = gr.Textbox(
|
289 |
-
show_label=True,
|
290 |
-
placeholder="Your API key will not be stored in any way.",
|
291 |
-
type="password",
|
292 |
-
label="OpenAI API Key",
|
293 |
-
# container=False
|
294 |
-
)
|
295 |
-
|
296 |
-
llm_model_engine = gr.Dropdown(
|
297 |
-
choices=["gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13",
|
298 |
-
"gpt-4o-mini", "gpt-4o-mini-2024-07-18"],
|
299 |
-
value="gpt-4o",
|
300 |
-
label="LLM Model"
|
301 |
-
)
|
302 |
-
with gr.Row():
|
303 |
-
max_steps = gr.Slider(value=5, minimum=1, maximum=10, step=1, label="Max Steps")
|
304 |
-
max_time = gr.Slider(value=180, minimum=60, maximum=300, step=30, label="Max Time (seconds)")
|
305 |
-
|
306 |
-
with gr.Row():
|
307 |
-
enabled_tools = gr.CheckboxGroup(
|
308 |
-
choices=all_tools,
|
309 |
-
value=all_tools,
|
310 |
-
label="Enabled Tools",
|
311 |
-
)
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
# Middle column for the query
|
316 |
-
with gr.Column(scale=2):
|
317 |
-
user_image = gr.Image(type="pil", label="Upload an image (optional)", height=500) # Accepts multiple formats
|
318 |
-
|
319 |
-
with gr.Row():
|
320 |
-
user_query = gr.Textbox( placeholder="Type your question here...", label="Question")
|
321 |
-
|
322 |
-
with gr.Row():
|
323 |
-
run_button = gr.Button("Run") # Run button
|
324 |
-
|
325 |
-
# Right column for the output
|
326 |
-
with gr.Column(scale=3):
|
327 |
-
chatbot_output = gr.Chatbot(type="messages", label="Step-wise problem-solving output (Deep Thinking)", height=500)
|
328 |
-
# chatbot_output.like(lambda x: print(f"User liked: {x}"))
|
329 |
-
|
330 |
-
# TODO: Add actions to the buttons
|
331 |
-
with gr.Row(elem_id="buttons") as button_row:
|
332 |
-
upvote_btn = gr.Button(value="👍 Upvote", interactive=True)
|
333 |
-
downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
|
334 |
-
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
|
335 |
-
|
336 |
-
with gr.Row():
|
337 |
-
comment_textbox = gr.Textbox(value="",
|
338 |
-
placeholder="Feel free to add any comments here. Thanks for using OctoTools!",
|
339 |
-
label="💬 Comment", interactive=True)
|
340 |
-
|
341 |
-
# Link button click to function
|
342 |
-
run_button.click(
|
343 |
-
fn=solve_problem_gradio,
|
344 |
-
inputs=[user_query, user_image, max_steps, max_time, api_key, llm_model_engine, enabled_tools],
|
345 |
-
outputs=chatbot_output
|
346 |
-
)
|
347 |
-
#################### Gradio Interface ####################
|
348 |
-
|
349 |
-
# Launch the Gradio app
|
350 |
-
demo.launch()
|
351 |
-
|
352 |
-
|
353 |
-
if __name__ == "__main__":
|
354 |
-
args = parse_arguments()
|
355 |
-
|
356 |
-
# Manually set enabled tools
|
357 |
-
# args.enabled_tools = "Generalist_Solution_Generator_Tool"
|
358 |
-
|
359 |
-
# All tools
|
360 |
-
all_tools = [
|
361 |
-
"Generalist_Solution_Generator_Tool",
|
362 |
-
|
363 |
-
"Image_Captioner_Tool",
|
364 |
-
"Object_Detector_Tool",
|
365 |
-
"Text_Detector_Tool",
|
366 |
-
"Relevant_Patch_Zoomer_Tool",
|
367 |
-
|
368 |
-
"Python_Code_Generator_Tool",
|
369 |
-
|
370 |
-
"ArXiv_Paper_Searcher_Tool",
|
371 |
-
"Google_Search_Tool",
|
372 |
-
"Nature_News_Fetcher_Tool",
|
373 |
-
"Pubmed_Search_Tool",
|
374 |
-
"URL_Text_Extractor_Tool",
|
375 |
-
"Wikipedia_Knowledge_Searcher_Tool"
|
376 |
-
]
|
377 |
-
args.enabled_tools = ",".join(all_tools)
|
378 |
-
|
379 |
-
main(args)
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
octotools/models/initializer.py
CHANGED
@@ -17,6 +17,7 @@ class Initializer:
|
|
17 |
print("\nInitializing OctoTools...")
|
18 |
print(f"Enabled tools: {self.enabled_tools}")
|
19 |
print(f"LLM model string: {self.model_string}")
|
|
|
20 |
self._set_up_tools()
|
21 |
|
22 |
def get_project_root(self):
|
@@ -48,7 +49,7 @@ class Initializer:
|
|
48 |
|
49 |
for root, dirs, files in os.walk(tools_dir):
|
50 |
# print(f"\nScanning directory: {root}")
|
51 |
-
if 'tool.py' in files and os.path.basename(root) in self.available_tools:
|
52 |
file = 'tool.py'
|
53 |
module_path = os.path.join(root, file)
|
54 |
module_name = os.path.splitext(file)[0]
|
|
|
17 |
print("\nInitializing OctoTools...")
|
18 |
print(f"Enabled tools: {self.enabled_tools}")
|
19 |
print(f"LLM model string: {self.model_string}")
|
20 |
+
|
21 |
self._set_up_tools()
|
22 |
|
23 |
def get_project_root(self):
|
|
|
49 |
|
50 |
for root, dirs, files in os.walk(tools_dir):
|
51 |
# print(f"\nScanning directory: {root}")
|
52 |
+
if 'tool.py' in files and os.path.basename(root) in self.available_tools: # NOTE
|
53 |
file = 'tool.py'
|
54 |
module_path = os.path.join(root, file)
|
55 |
module_name = os.path.splitext(file)[0]
|
utils.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
|
5 |
+
|
6 |
+
def save_feedback(cache_dir: str, feedback_type: str, comment: str = None):
|
7 |
+
print(f"==> Saving feedback to {cache_dir}")
|
8 |
+
print(f"==> Feedback type: {feedback_type}")
|
9 |
+
print(f"==> Comment: {comment}")
|
10 |
+
|
11 |
+
feedback_file = os.path.join(cache_dir, "user_feedback.json")
|
12 |
+
if os.path.exists(feedback_file):
|
13 |
+
with open(feedback_file, 'r') as f:
|
14 |
+
feedback_data = json.load(f)
|
15 |
+
else:
|
16 |
+
feedback_data = []
|
17 |
+
|
18 |
+
feedback_data.append({
|
19 |
+
"timestamp": time.strftime("%Y%m%d_%H%M%S"),
|
20 |
+
"feedback_type": feedback_type,
|
21 |
+
"comment": comment
|
22 |
+
})
|
23 |
+
|
24 |
+
# Save feedback
|
25 |
+
with open(feedback_file, 'w') as f:
|
26 |
+
json.dump(feedback_data, f, indent=4)
|