import argparse import requests import os from tqdm import tqdm def download_file(url, path): response = requests.get(url, stream=True) total_size_in_bytes = int(response.headers.get('content-length', 0)) block_size = 1024 #1 Kbyte progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) with open(path, 'wb') as file: for data in response.iter_content(block_size): progress_bar.update(len(data)) file.write(data) progress_bar.close() def download_model(model_name, destination_folder="models"): # Define the base URL and headers for the Hugging Face API base_url = f"https://huggingface.co/{model_name}/resolve/main" headers = {"User-Agent": "Hugging Face Python"} # Send a GET request to the Hugging Face API to get a list of all files response = requests.get(f"https://huggingface.co/api/models/{model_name}", headers=headers) response.raise_for_status() # Extract the list of files from the response JSON files_to_download = [file["rfilename"] for file in response.json()["siblings"]] # Ensure the directory exists os.makedirs(f"{destination_folder}/{model_name}", exist_ok=True) # Download each file for file in files_to_download: print(f"Downloading {file}...") download_file(f"{base_url}/{file}", f"{destination_folder}/{model_name}/{file}") if __name__ == "__main__": # parser = argparse.ArgumentParser() # parser.add_argument("model_name", type=str, default="sam2ai/whisper-odia-small-finetune-int8-ct2", help="Name of the model to download.") # args = parser.parse_args() download_model("sam2ai/whisper-odia-small-finetune-int8-ct2")