api-nvidia-llama / main.py
OjciecTadeusz's picture
Update main.py
2f2e09e verified
from fastapi import FastAPI
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
app = FastAPI()
# client = InferenceClient("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.0
max_new_tokens: int = 1048
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(item: Item):
temperature = float(item.temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(item.top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=item.max_new_tokens,
top_p=top_p,
repetition_penalty=item.repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
return output
@app.post("/generate/")
async def generate_text(item: Item):
return {"response": generate(item)}