File size: 4,482 Bytes
1ae0fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b562f6f
1ae0fad
b562f6f
 
1ae0fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b562f6f
1ae0fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import json
import math

import torch
import torch.nn.functional as F
import librosa
import numpy as np
import soundfile as sf
import gradio as gr
import openvino as ov

from env import AttrDict
from meldataset import mel_spectrogram, MAX_WAV_VALUE
from stft import TorchSTFT


# files
hpfile = "config_v1_16k.json"
g1path = "exp/g1.xml"
g2path = "exp/g2.xml"
spk2id_path = "filelists/spk2id.json"
f0_stats_path = "filelists/f0_stats.json"
spk_stats_path = "filelists/spk_stats.json"
spk_emb_dir = "dataset/spk"
spk_wav_dir = "dataset/audio"

# load config
with open(hpfile) as f:
    data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)

# load models
core = ov.Core()
g1 = core.read_model(model=g1path)
g1 = core.compile_model(model=g1, device_name="CPU")
g2 = core.read_model(model=g2path)
g2 = core.compile_model(model=g2, device_name="CPU")

stft = TorchSTFT(filter_length=h.gen_istft_n_fft, hop_length=h.gen_istft_hop_size, win_length=h.gen_istft_n_fft)

# load stats
with open(spk2id_path) as f:
    spk2id = json.load(f)
with open(f0_stats_path) as f:
    f0_stats = json.load(f)
with open(spk_stats_path) as f:
    spk_stats = json.load(f)

# tune f0
threshold = 10
step = (math.log(1100) - math.log(50)) / 256
def tune_f0(initial_f0, i):
    if i == 0:
        return initial_f0
    voiced = initial_f0 > threshold
    initial_lf0 = np.log(initial_f0)
    lf0 = initial_lf0 + step * i
    f0 = np.exp(lf0)
    f0 = np.where(voiced, f0, initial_f0)
    return f0

# infer
def infer(wav, mel, spk_emb, spk_id, f0_mean_tgt):
    # g1
    out = g1([wav, mel, spk_emb, spk_id, f0_mean_tgt])
    x = out[g1.output(0)]
    har_source = out[g1.output(1)]

    # stft
    har_source = torch.from_numpy(har_source)
    har_spec, har_phase = stft.transform(har_source)
    har_spec, har_phase = har_spec.numpy(), har_phase.numpy()

    # g2
    out = g2([x, har_spec, har_phase])
    spec = out[g2.output(0)]
    phase = out[g2.output(1)]

    # istft
    spec, phase = torch.from_numpy(spec), torch.from_numpy(phase)
    y = stft.inverse(spec, phase)

    return y

# convert function
def convert(tgt_spk, src_wav, f0_shift=0):
    tgt_ref = spk_stats[tgt_spk]["best_spk_emb"]
    tgt_emb = f"{spk_emb_dir}/{tgt_spk}/{tgt_ref}.npy"

    with torch.no_grad():
        # tgt
        spk_id = spk2id[tgt_spk]
        spk_id = np.array([spk_id], dtype=np.int64)[None, :]
        
        spk_emb = np.load(tgt_emb)[None, :]

        f0_mean_tgt = f0_stats[tgt_spk]["mean"]
        f0_mean_tgt = np.array([f0_mean_tgt], dtype=np.float32)[None, :]
        f0_mean_tgt = tune_f0(f0_mean_tgt, f0_shift)

        # src
        wav, sr = librosa.load(src_wav, sr=16000)
        wav = wav[None, :]
        mel = mel_spectrogram(torch.from_numpy(wav), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax).numpy()
        
        # cvt
        y = infer(wav, mel, spk_emb, spk_id, f0_mean_tgt)
        
        audio = y.squeeze()
        audio = audio / torch.max(torch.abs(audio)) * 0.95
        audio = audio * MAX_WAV_VALUE
        audio = audio.cpu().numpy().astype('int16')

        sf.write("out.wav", audio, h.sampling_rate, "PCM_16")

    out_wav = "out.wav"
    return out_wav

# change spk
def change_spk(tgt_spk):
    tgt_ref = spk_stats[tgt_spk]["best_spk_emb"]
    tgt_wav = f"{spk_wav_dir}/{tgt_spk}/{tgt_ref}.wav"
    return tgt_wav

# interface
with gr.Blocks() as demo:
    gr.Markdown("# PitchVC-vino")
    gr.Markdown("Gradio Demo for PitchVC with OpenVINO on CPU. ([Github Repo](https://github.com/OlaWod/PitchVC))")

    with gr.Row():
        with gr.Column():
            tgt_spk = gr.Dropdown(choices=spk2id.keys(), type="value", label="Target Speaker")
            ref_audio =  gr.Audio(label="Reference Audio", type='filepath')
            src_audio = gr.Audio(label="Source Audio", type='filepath')
            f0_shift = gr.Slider(minimum=-30, maximum=30, value=0, step=1, label="F0 Shift")
        with gr.Column():
            out_audio =  gr.Audio(label="Output Audio", type='filepath')
            submit = gr.Button(value="Submit")

    tgt_spk.change(fn=change_spk, inputs=[tgt_spk], outputs=[ref_audio])
    submit.click(convert, [tgt_spk, src_audio, f0_shift], [out_audio])

    examples = gr.Examples(
        examples=[["p225", 'dataset/audio/p226/p226_341.wav', 0], 
                    ["p226", 'dataset/audio/p225/p225_220.wav', -5]],
        inputs=[tgt_spk, src_audio, f0_shift])

demo.launch()