Spaces:
Running
Running
import os | |
import json | |
import math | |
import torch | |
import torch.nn.functional as F | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
import gradio as gr | |
from transformers import WavLMModel | |
from env import AttrDict | |
from meldataset import mel_spectrogram, MAX_WAV_VALUE | |
from models import Generator | |
from Utils.JDC.model import JDCNet | |
# files | |
hpfile = "config_v1_16k.json" | |
ptfile = "exp/default/g_00700000" | |
spk2id_path = "filelists/spk2id.json" | |
f0_stats_path = "filelists/f0_stats.json" | |
spk_stats_path = "filelists/spk_stats.json" | |
spk_emb_dir = "dataset/spk" | |
spk_wav_dir = "dataset/audio" | |
# device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# load config | |
with open(hpfile) as f: | |
data = f.read() | |
json_config = json.loads(data) | |
h = AttrDict(json_config) | |
# load models | |
F0_model = JDCNet(num_class=1, seq_len=192) | |
generator = Generator(h, F0_model).to(device) | |
state_dict_g = torch.load(ptfile, map_location=device) | |
generator.load_state_dict(state_dict_g['generator'], strict=True) | |
generator.remove_weight_norm() | |
_ = generator.eval() | |
wavlm = WavLMModel.from_pretrained("microsoft/wavlm-base-plus") | |
wavlm.eval() | |
wavlm.to(device) | |
# load stats | |
with open(spk2id_path) as f: | |
spk2id = json.load(f) | |
with open(f0_stats_path) as f: | |
f0_stats = json.load(f) | |
with open(spk_stats_path) as f: | |
spk_stats = json.load(f) | |
# tune f0 | |
threshold = 10 | |
step = (math.log(1100) - math.log(50)) / 256 | |
def tune_f0(initial_f0, i): | |
if i == 0: | |
return initial_f0 | |
voiced = initial_f0 > threshold | |
initial_lf0 = torch.log(initial_f0) | |
lf0 = initial_lf0 + step * i | |
f0 = torch.exp(lf0) | |
f0 = torch.where(voiced, f0, initial_f0) | |
return f0 | |
# convert function | |
def convert(tgt_spk, src_wav, f0_shift=0): | |
tgt_ref = spk_stats[tgt_spk]["best_spk_emb"] | |
tgt_emb = f"{spk_emb_dir}/{tgt_spk}/{tgt_ref}.npy" | |
with torch.no_grad(): | |
# tgt | |
spk_id = spk2id[tgt_spk] | |
spk_id = torch.LongTensor([spk_id]).unsqueeze(0).to(device) | |
spk_emb = np.load(tgt_emb) | |
spk_emb = torch.from_numpy(spk_emb).unsqueeze(0).to(device) | |
f0_mean_tgt = f0_stats[tgt_spk]["mean"] | |
f0_mean_tgt = torch.FloatTensor([f0_mean_tgt]).unsqueeze(0).to(device) | |
# src | |
wav, sr = librosa.load(src_wav, sr=16000) | |
wav = torch.FloatTensor(wav).to(device) | |
mel = mel_spectrogram(wav.unsqueeze(0), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax) | |
x = wavlm(wav.unsqueeze(0)).last_hidden_state | |
x = x.transpose(1, 2) # (B, C, T) | |
x = F.pad(x, (0, mel.size(2) - x.size(2)), 'constant') | |
# cvt | |
f0 = generator.get_f0(mel, f0_mean_tgt) | |
f0 = tune_f0(f0, f0_shift) | |
x = generator.get_x(x, spk_emb, spk_id) | |
y = generator.infer(x, f0) | |
audio = y.squeeze() | |
audio = audio / torch.max(torch.abs(audio)) * 0.95 | |
audio = audio * MAX_WAV_VALUE | |
audio = audio.cpu().numpy().astype('int16') | |
sf.write("out.wav", audio, h.sampling_rate, "PCM_16") | |
out_wav = "out.wav" | |
return out_wav | |
# change spk | |
def change_spk(tgt_spk): | |
tgt_ref = spk_stats[tgt_spk]["best_spk_emb"] | |
tgt_wav = f"{spk_wav_dir}/{tgt_spk}/{tgt_ref}.wav" | |
return tgt_wav | |
# interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# PitchVC") | |
gr.Markdown("Gradio Demo for PitchVC. ([Github Repo](https://github.com/OlaWod/PitchVC))") | |
with gr.Row(): | |
with gr.Column(): | |
tgt_spk = gr.Dropdown(choices=spk2id.keys(), type="value", label="Target Speaker") | |
ref_audio = gr.Audio(label="Reference Audio", type='filepath') | |
src_audio = gr.Audio(label="Source Audio", type='filepath') | |
f0_shift = gr.Slider(minimum=-30, maximum=30, value=0, step=1, label="F0 Shift") | |
with gr.Column(): | |
out_audio = gr.Audio(label="Output Audio", type='filepath') | |
submit = gr.Button(value="Submit") | |
tgt_spk.change(fn=change_spk, inputs=[tgt_spk], outputs=[ref_audio]) | |
submit.click(convert, [tgt_spk, src_audio, f0_shift], [out_audio]) | |
examples = gr.Examples( | |
examples=[["p225", 'dataset/audio/p226/p226_341.wav', 0], | |
["p226", 'dataset/audio/p225/p225_220.wav', -5]], | |
inputs=[tgt_spk, src_audio, f0_shift]) | |
demo.launch() | |