Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from utils import init_weights, get_padding | |
import numpy as np | |
from stft import TorchSTFT | |
LRELU_SLOPE = 0.1 | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
class WN(torch.nn.Module): | |
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): | |
super(WN, self).__init__() | |
assert(kernel_size % 2 == 1) | |
self.hidden_channels =hidden_channels | |
self.kernel_size = kernel_size, | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.p_dropout = p_dropout | |
self.in_layers = torch.nn.ModuleList() | |
self.res_skip_layers = torch.nn.ModuleList() | |
self.drop = nn.Dropout(p_dropout) | |
if gin_channels != 0: | |
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1) | |
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') | |
for i in range(n_layers): | |
dilation = dilation_rate ** i | |
padding = int((kernel_size * dilation - dilation) / 2) | |
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size, | |
dilation=dilation, padding=padding) | |
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') | |
self.in_layers.append(in_layer) | |
# last one is not necessary | |
if i < n_layers - 1: | |
res_skip_channels = 2 * hidden_channels | |
else: | |
res_skip_channels = hidden_channels | |
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) | |
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') | |
self.res_skip_layers.append(res_skip_layer) | |
def forward(self, x, x_mask, g=None, **kwargs): | |
output = torch.zeros_like(x) | |
n_channels_tensor = torch.IntTensor([self.hidden_channels]) | |
if g is not None: | |
g = self.cond_layer(g) | |
for i in range(self.n_layers): | |
x_in = self.in_layers[i](x) | |
if g is not None: | |
cond_offset = i * 2 * self.hidden_channels | |
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] | |
else: | |
g_l = torch.zeros_like(x_in) | |
acts = fused_add_tanh_sigmoid_multiply( | |
x_in, | |
g_l, | |
n_channels_tensor) | |
acts = self.drop(acts) | |
res_skip_acts = self.res_skip_layers[i](acts) | |
if i < self.n_layers - 1: | |
res_acts = res_skip_acts[:,:self.hidden_channels,:] | |
x = (x + res_acts) * x_mask | |
output = output + res_skip_acts[:,self.hidden_channels:,:] | |
else: | |
output = output + res_skip_acts | |
return output * x_mask | |
def remove_weight_norm(self): | |
if self.gin_channels != 0: | |
torch.nn.utils.remove_weight_norm(self.cond_layer) | |
for l in self.in_layers: | |
torch.nn.utils.remove_weight_norm(l) | |
for l in self.res_skip_layers: | |
torch.nn.utils.remove_weight_norm(l) | |
class Encoder(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=0): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) | |
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
def forward(self, x, x_mask=1, g=None): | |
# x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | |
x = self.pre(x) * x_mask | |
x = self.enc(x, x_mask, g=g) | |
x = self.proj(x) * x_mask | |
return x | |
class ResBlock1(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super(ResBlock1, self).__init__() | |
self.h = h | |
self.convs1 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]))) | |
]) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))) | |
]) | |
self.convs2.apply(init_weights) | |
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))]) | |
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))]) | |
def forward(self, x): | |
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, self.alpha1, self.alpha2): | |
xt = x + (1 / a1) * (torch.sin(a1 * x) ** 2) # Snake1D | |
xt = c1(xt) | |
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class ResBlock1_old(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super(ResBlock1, self).__init__() | |
self.h = h | |
self.convs1 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]))) | |
]) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))) | |
]) | |
self.convs2.apply(init_weights) | |
def forward(self, x): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, LRELU_SLOPE) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class ResBlock2(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): | |
super(ResBlock2, self).__init__() | |
self.h = h | |
self.convs = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))) | |
]) | |
self.convs.apply(init_weights) | |
def forward(self, x): | |
for c in self.convs: | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_weight_norm(l) | |
class SineGen(torch.nn.Module): | |
""" Definition of sine generator | |
SineGen(samp_rate, harmonic_num = 0, | |
sine_amp = 0.1, noise_std = 0.003, | |
voiced_threshold = 0, | |
flag_for_pulse=False) | |
samp_rate: sampling rate in Hz | |
harmonic_num: number of harmonic overtones (default 0) | |
sine_amp: amplitude of sine-wavefrom (default 0.1) | |
noise_std: std of Gaussian noise (default 0.003) | |
voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
Note: when flag_for_pulse is True, the first time step of a voiced | |
segment is always sin(np.pi) or cos(0) | |
""" | |
def __init__(self, samp_rate, upsample_scale, harmonic_num=0, | |
sine_amp=0.1, noise_std=0.003, | |
voiced_threshold=0, | |
flag_for_pulse=False): | |
super(SineGen, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = noise_std | |
self.harmonic_num = harmonic_num | |
self.dim = self.harmonic_num + 1 | |
self.sampling_rate = samp_rate | |
self.voiced_threshold = voiced_threshold | |
self.flag_for_pulse = flag_for_pulse | |
self.upsample_scale = upsample_scale | |
def _f02uv(self, f0): | |
# generate uv signal | |
uv = (f0 > self.voiced_threshold).type(torch.float32) | |
return uv | |
def _f02sine(self, f0_values): | |
""" f0_values: (batchsize, length, dim) | |
where dim indicates fundamental tone and overtones | |
""" | |
# convert to F0 in rad. The interger part n can be ignored | |
# because 2 * np.pi * n doesn't affect phase | |
rad_values = (f0_values / self.sampling_rate) % 1 | |
# initial phase noise (no noise for fundamental component) | |
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ | |
device=f0_values.device) | |
rand_ini[:, 0] = 0 | |
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini | |
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) | |
if not self.flag_for_pulse: | |
# # for normal case | |
# # To prevent torch.cumsum numerical overflow, | |
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. | |
# # Buffer tmp_over_one_idx indicates the time step to add -1. | |
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi | |
# tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0 | |
# cumsum_shift = torch.zeros_like(rad_values) | |
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi | |
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), | |
scale_factor=1/self.upsample_scale, | |
mode="linear").transpose(1, 2) | |
# tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0 | |
# cumsum_shift = torch.zeros_like(rad_values) | |
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi | |
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale, | |
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2) | |
sines = torch.sin(phase) | |
else: | |
# If necessary, make sure that the first time step of every | |
# voiced segments is sin(pi) or cos(0) | |
# This is used for pulse-train generation | |
# identify the last time step in unvoiced segments | |
uv = self._f02uv(f0_values) | |
uv_1 = torch.roll(uv, shifts=-1, dims=1) | |
uv_1[:, -1, :] = 1 | |
u_loc = (uv < 1) * (uv_1 > 0) | |
# get the instantanouse phase | |
tmp_cumsum = torch.cumsum(rad_values, dim=1) | |
# different batch needs to be processed differently | |
for idx in range(f0_values.shape[0]): | |
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] | |
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] | |
# stores the accumulation of i.phase within | |
# each voiced segments | |
tmp_cumsum[idx, :, :] = 0 | |
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum | |
# rad_values - tmp_cumsum: remove the accumulation of i.phase | |
# within the previous voiced segment. | |
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) | |
# get the sines | |
sines = torch.cos(i_phase * 2 * np.pi) | |
return sines | |
def forward(self, f0): | |
""" sine_tensor, uv = forward(f0) | |
input F0: tensor(batchsize=1, length, dim=1) | |
f0 for unvoiced steps should be 0 | |
output sine_tensor: tensor(batchsize=1, length, dim) | |
output uv: tensor(batchsize=1, length, 1) | |
""" | |
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, | |
device=f0.device) | |
# fundamental component | |
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) | |
# generate sine waveforms | |
sine_waves = self._f02sine(fn) * self.sine_amp | |
# generate uv signal | |
# uv = torch.ones(f0.shape) | |
# uv = uv * (f0 > self.voiced_threshold) | |
uv = self._f02uv(f0) | |
# noise: for unvoiced should be similar to sine_amp | |
# std = self.sine_amp/3 -> max value ~ self.sine_amp | |
# . for voiced regions is self.noise_std | |
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
noise = noise_amp * torch.randn_like(sine_waves) | |
# first: set the unvoiced part to 0 by uv | |
# then: additive noise | |
sine_waves = sine_waves * uv + noise | |
return sine_waves, uv, noise | |
class SourceModuleHnNSF(torch.nn.Module): | |
""" SourceModule for hn-nsf | |
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
add_noise_std=0.003, voiced_threshod=0) | |
sampling_rate: sampling_rate in Hz | |
harmonic_num: number of harmonic above F0 (default: 0) | |
sine_amp: amplitude of sine source signal (default: 0.1) | |
add_noise_std: std of additive Gaussian noise (default: 0.003) | |
note that amplitude of noise in unvoiced is decided | |
by sine_amp | |
voiced_threshold: threhold to set U/V given F0 (default: 0) | |
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
F0_sampled (batchsize, length, 1) | |
Sine_source (batchsize, length, 1) | |
noise_source (batchsize, length 1) | |
uv (batchsize, length, 1) | |
""" | |
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, | |
add_noise_std=0.003, voiced_threshod=0): | |
super(SourceModuleHnNSF, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = add_noise_std | |
# to produce sine waveforms | |
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num, | |
sine_amp, add_noise_std, voiced_threshod) | |
# to merge source harmonics into a single excitation | |
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
self.l_tanh = torch.nn.Tanh() | |
def forward(self, x): | |
""" | |
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
F0_sampled (batchsize, length, 1) | |
Sine_source (batchsize, length, 1) | |
noise_source (batchsize, length 1) | |
""" | |
# source for harmonic branch | |
with torch.no_grad(): | |
sine_wavs, uv, _ = self.l_sin_gen(x) | |
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
# source for noise branch, in the same shape as uv | |
noise = torch.randn_like(uv) * self.sine_amp / 3 | |
return sine_merge, noise, uv | |
def padDiff(x): | |
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0) | |
class Generator(torch.nn.Module): | |
def __init__(self, h, F0_model): | |
super(Generator, self).__init__() | |
self.h = h | |
self.num_kernels = len(h.resblock_kernel_sizes) | |
self.num_upsamples = len(h.upsample_rates) | |
resblock = ResBlock1 if h.resblock == '1' else ResBlock2 | |
self.m_source = SourceModuleHnNSF( | |
sampling_rate=h.sampling_rate, | |
upsample_scale=np.prod(h.upsample_rates) * h.gen_istft_hop_size, | |
harmonic_num=8, voiced_threshod=10) | |
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h.upsample_rates) * h.gen_istft_hop_size) | |
self.noise_convs = nn.ModuleList() | |
self.noise_res = nn.ModuleList() | |
self.F0_model = F0_model | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): | |
self.ups.append(weight_norm( | |
ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), | |
k, u, padding=(k-u)//2))) | |
c_cur = h.upsample_initial_channel // (2 ** (i + 1)) | |
if i + 1 < len(h.upsample_rates): # | |
stride_f0 = np.prod(h.upsample_rates[i + 1:]) | |
self.noise_convs.append(Conv1d( | |
h.gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2)) | |
self.noise_res.append(resblock(h, c_cur, 7, [1,3,5])) | |
else: | |
self.noise_convs.append(Conv1d(h.gen_istft_n_fft + 2, c_cur, kernel_size=1)) | |
self.noise_res.append(resblock(h, c_cur, 11, [1,3,5])) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = h.upsample_initial_channel//(2**(i+1)) | |
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): | |
self.resblocks.append(resblock(h, ch, k, d)) | |
self.post_n_fft = h.gen_istft_n_fft | |
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3)) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0)) | |
self.stft = TorchSTFT(filter_length=h.gen_istft_n_fft, hop_length=h.gen_istft_hop_size, win_length=h.gen_istft_n_fft) | |
gin_channels = 256 | |
inter_channels = hidden_channels = h.upsample_initial_channel - gin_channels | |
self.embed_spk = nn.Embedding(108, gin_channels) | |
self.enc = Encoder(768, inter_channels, hidden_channels, 5, 1, 4) | |
self.dec = Encoder(inter_channels, inter_channels, hidden_channels, 5, 1, 20, gin_channels=gin_channels) | |
def forward(self, x, mel, spk_emb, spk_id): | |
g = self.embed_spk(spk_id).transpose(1, 2) | |
g = g + spk_emb.unsqueeze(-1) | |
f0, _, _ = self.F0_model(mel.unsqueeze(1)) | |
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
har_source, _, _ = self.m_source(f0) | |
har_source = har_source.transpose(1, 2).squeeze(1) | |
har_spec, har_phase = self.stft.transform(har_source) | |
har = torch.cat([har_spec, har_phase], dim=1) | |
x = self.enc(x) | |
x = self.dec(x, g=g) | |
g = g.repeat(1, 1, x.shape[-1]) | |
x = torch.cat([x, g], dim=1) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
x_source = self.noise_convs[i](har) | |
x_source = self.noise_res[i](x_source) | |
x = self.ups[i](x) | |
if i == self.num_upsamples - 1: | |
x = self.reflection_pad(x) | |
x = x + x_source | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i*self.num_kernels+j](x) | |
else: | |
xs += self.resblocks[i*self.num_kernels+j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]) | |
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]) | |
return spec, phase | |
def get_f0(self, mel, f0_mean_tgt, voiced_threshold=10): | |
f0, _, _ = self.F0_model(mel.unsqueeze(1)) | |
voiced = f0 > voiced_threshold | |
lf0 = torch.log(f0) | |
lf0_ = lf0 * voiced.float() | |
lf0_mean = lf0_.sum(1) / voiced.float().sum(1) | |
lf0_mean = lf0_mean.unsqueeze(1) | |
lf0_adj = lf0 - lf0_mean + torch.log(f0_mean_tgt) | |
f0_adj = torch.exp(lf0_adj) | |
energy = mel.sum(1) | |
unsilent = energy > -700 | |
unsilent = unsilent | voiced # simple vad | |
f0_adj = f0_adj * unsilent.float() | |
return f0_adj | |
def get_x(self, x, spk_emb, spk_id): | |
g = self.embed_spk(spk_id).transpose(1, 2) | |
g = g + spk_emb.unsqueeze(-1) | |
x = self.enc(x) | |
x = self.dec(x, g=g) | |
g = g.repeat(1, 1, x.shape[-1]) | |
x = torch.cat([x, g], dim=1) | |
return x | |
def infer(self, x, f0): | |
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
har_source, _, _ = self.m_source(f0) | |
har_source = har_source.transpose(1, 2).squeeze(1) | |
har_spec, har_phase = self.stft.transform(har_source) | |
har = torch.cat([har_spec, har_phase], dim=1) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
x_source = self.noise_convs[i](har) | |
x_source = self.noise_res[i](x_source) | |
x = self.ups[i](x) | |
if i == self.num_upsamples - 1: | |
x = self.reflection_pad(x) | |
x = x + x_source | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i*self.num_kernels+j](x) | |
else: | |
xs += self.resblocks[i*self.num_kernels+j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]) | |
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]) | |
y = self.stft.inverse(spec, phase) | |
return y | |
def remove_weight_norm(self): | |
print('Removing weight norm...') | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_weight_norm(self.conv_post) | |
def stft(x, fft_size, hop_size, win_length, window): | |
"""Perform STFT and convert to magnitude spectrogram. | |
Args: | |
x (Tensor): Input signal tensor (B, T). | |
fft_size (int): FFT size. | |
hop_size (int): Hop size. | |
win_length (int): Window length. | |
window (str): Window function type. | |
Returns: | |
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). | |
""" | |
x_stft = torch.stft(x, fft_size, hop_size, win_length, window, | |
return_complex=True) | |
real = x_stft[..., 0] | |
imag = x_stft[..., 1] | |
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf | |
return torch.abs(x_stft).transpose(2, 1) | |
class SpecDiscriminator(nn.Module): | |
"""docstring for Discriminator.""" | |
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False): | |
super(SpecDiscriminator, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.fft_size = fft_size | |
self.shift_size = shift_size | |
self.win_length = win_length | |
self.window = getattr(torch, window)(win_length) | |
self.discriminators = nn.ModuleList([ | |
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))), | |
]) | |
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1)) | |
def forward(self, y): | |
fmap = [] | |
y = y.squeeze(1) | |
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device())) | |
y = y.unsqueeze(1) | |
for i, d in enumerate(self.discriminators): | |
y = d(y) | |
y = F.leaky_relu(y, LRELU_SLOPE) | |
fmap.append(y) | |
y = self.out(y) | |
fmap.append(y) | |
return torch.flatten(y, 1, -1), fmap | |
class MultiResSpecDiscriminator(torch.nn.Module): | |
def __init__(self, | |
fft_sizes=[1024, 2048, 512], | |
hop_sizes=[120, 240, 50], | |
win_lengths=[600, 1200, 240], | |
window="hann_window"): | |
super(MultiResSpecDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList([ | |
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window), | |
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window), | |
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window) | |
]) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
]) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self): | |
super(MultiPeriodDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorP(2), | |
DiscriminatorP(3), | |
DiscriminatorP(5), | |
DiscriminatorP(7), | |
DiscriminatorP(11), | |
]) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv1d(1, 128, 15, 1, padding=7)), | |
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), | |
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), | |
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
]) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiScaleDiscriminator(torch.nn.Module): | |
def __init__(self): | |
super(MultiScaleDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorS(use_spectral_norm=True), | |
DiscriminatorS(), | |
DiscriminatorS(), | |
]) | |
self.meanpools = nn.ModuleList([ | |
AvgPool1d(4, 2, padding=2), | |
AvgPool1d(4, 2, padding=2) | |
]) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
if i != 0: | |
y = self.meanpools[i-1](y) | |
y_hat = self.meanpools[i-1](y_hat) | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss*2 | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean((1-dr)**2) | |
g_loss = torch.mean(dg**2) | |
loss += (r_loss + g_loss) | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
l = torch.mean((1-dg)**2) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |
def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
tau = 0.04 | |
m_DG = torch.median((dr-dg)) | |
L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG]) | |
loss += tau - F.relu(tau - L_rel) | |
return loss | |
def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
for dg, dr in zip(disc_real_outputs, disc_generated_outputs): | |
tau = 0.04 | |
m_DG = torch.median((dr-dg)) | |
L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG]) | |
loss += tau - F.relu(tau - L_rel) | |
return loss | |