Oliver Li
bug fix
c985984
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
# Function to load the pre-trained model
def load_finetune_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
return tokenizer, model
def load_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
sentiment_pipeline = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
return sentiment_pipeline
# Streamlit app
st.title("Multi-label Toxicity Detection App")
st.write("Enter a text and select the fine-tuned model to get the toxicity analysis.")
# Input text
default_text = "You might be the most stupid person in the world."
text = st.text_input("Enter your text:", value=default_text)
category = {'LABEL_0': 'toxic', 'LABEL_1': 'severe_toxic', 'LABEL_2': 'obscene', 'LABEL_3': 'threat', 'LABEL_4': 'insult', 'LABEL_5': 'identity_hate'}
# Model selection
model_options = {
"Olivernyu/finetuned_bert_base_uncased": {
"description": "This model detects different types of toxicity like threats, obscenity, insults, and identity-based hate in text. The table is prepopulated with some data, the table will be displayed once you hit analyze.",
},
"distilbert-base-uncased-finetuned-sst-2-english": {
"labels": ["NEGATIVE", "POSITIVE"],
"description": "This model classifies text into positive or negative sentiment. It is based on DistilBERT and fine-tuned on the Stanford Sentiment Treebank (SST-2) dataset.",
},
"textattack/bert-base-uncased-SST-2": {
"labels": ["LABEL_0", "LABEL_1"],
"description": "This model classifies text into positive(LABEL_1) or negative(LABEL_0) sentiment. It is based on BERT and fine-tuned on the Stanford Sentiment Treebank (SST-2) dataset.",
},
"cardiffnlp/twitter-roberta-base-sentiment": {
"labels": ["LABEL_0", "LABEL_1", "LABEL_2"],
"description": "This model classifies tweets into negative (LABEL_0), neutral(LABEL_1), or positive(LABEL_2) sentiment. It is based on RoBERTa and fine-tuned on a large dataset of tweets.",
},
}
selected_model = st.selectbox("Choose a fine-tuned model:", model_options)
st.write("### Model Information")
st.write(f"**Description:** {model_options[selected_model]['description']}")
initial_table_df = pd.DataFrame(columns=["Text (portion)", "Toxicity class 1", "Class 1 probability", "Toxicity class 2", "Class 2 probability"])
initial_table_data = [{'Text (portion)': ["who's speaking? \n you goddamn cocksucker you know "],
'Toxicity class 1': ['obscene'],
'Class 1 probability': 0.7282997369766235,
'Toxicity class 2': ['toxic'],
'Class 2 probability': 0.2139672487974167},
{'Text (portion)': ['::Here is another source: Melissa Sue Halverson (2'],
'Toxicity class 1': ['toxic'],
'Class 1 probability': 0.24484945833683014,
'Toxicity class 2': ['obscene'],
'Class 2 probability': 0.1627064049243927},
{'Text (portion)': [', 8 November 2007 (UTC) \n\n All I can say is, havin'],
'Toxicity class 1': ['toxic'],
'Class 1 probability': 0.7277262806892395,
'Toxicity class 2': ['obscene'],
'Class 2 probability': 0.2502792477607727},
{'Text (portion)': ['::::I only see that at birth two persons are given'],
'Toxicity class 1': ['toxic'],
'Class 1 probability': 0.2711867094039917,
'Toxicity class 2': ['insult'],
'Class 2 probability': 0.15477754175662994},
{'Text (portion)': ["* There you have it: one man's Barnstar is another"],
'Toxicity class 1': ['toxic'],
'Class 1 probability': 0.5408656001091003,
'Toxicity class 2': ['insult'],
'Class 2 probability': 0.12563346326351166},
{'Text (portion)': ['" \n\n == Fact == \n\n Could just be abit of trivial f'],
'Toxicity class 1': ['toxic'],
'Class 1 probability': 0.35239243507385254,
'Toxicity class 2': ['obscene'],
'Class 2 probability': 0.1686778962612152},
{'Text (portion)': ['HE IS A GHAY ASS FUCKER@@!!'],
'Toxicity class 1': ['obscene'],
'Class 1 probability': 0.7819343209266663,
'Toxicity class 2': ['toxic'],
'Class 2 probability': 0.16951803863048553},
{'Text (portion)': ["I'VE SEEN YOUR CRIMES AGAINST CHILDREN AND I'M ASH"],
'Toxicity class 1': ['toxic'],
'Class 1 probability': 0.8491994738578796,
'Toxicity class 2': ['threat'],
'Class 2 probability': 0.04749392718076706},
{'Text (portion)': [':While with a lot of that essay says, general time'],
'Toxicity class 1': ['toxic'],
'Class 1 probability': 0.282654732465744,
'Toxicity class 2': ['obscene'],
'Class 2 probability': 0.15901680290699005},
{'Text (portion)': ['== Help == \n\n Please members of wiki, help me. My '],
'Toxicity class 1': ['toxic'],
'Class 1 probability': 0.3118911385536194,
'Toxicity class 2': ['obscene'],
'Class 2 probability': 0.16506287455558777}]
for d in initial_table_data:
initial_table_df = pd.concat([initial_table_df, pd.DataFrame(d)], ignore_index=True)
# Load the model and perform toxicity analysis
if "table" not in st.session_state:
st.session_state['table'] = initial_table_df
if st.button("Analyze"):
if not text:
st.write("Please enter a text.")
else:
with st.spinner("Analyzing toxicity..."):
if selected_model == "Olivernyu/finetuned_bert_base_uncased":
toxicity_detector = load_model(selected_model)
outputs = toxicity_detector(text, top_k=2)
category_names = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
results = []
for item in outputs:
results.append((category[item['label']], item['score']))
# Create a table with the input text (or a portion of it), the highest toxicity class, and its probability
table_data = {
"Text (portion)": [text[:50]],
"Toxicity class 1": [results[0][0]],
f"Class 1 probability": results[0][1],
"Toxicity class 2": [results[1][0]],
f"Class 2 probability": results[1][1]
}
# print("Before concatenation:")
# print(table_df)
# Concatenate the new data frame with the existing data frame
st.session_state['table'] = pd.concat([pd.DataFrame(table_data), st.session_state['table']], ignore_index=True)
# print("After concatenation:")
# print(table_df)
# Update the table with the new data frame
st.table(st.session_state['table'])
else:
st.empty()
sentiment_pipeline = load_model(selected_model)
result = sentiment_pipeline(text)
st.write(f"Sentiment: {result[0]['label']} (confidence: {result[0]['score']:.2f})")
if result[0]['label'] in ['POSITIVE', 'LABEL_1'] and result[0]['score']> 0.9:
st.balloons()
elif result[0]['label'] in ['NEGATIVE', 'LABEL_0'] and result[0]['score']> 0.9:
st.error("Hater detected.")
else:
st.write("Enter a text and click 'Analyze' to perform toxicity analysis.")