|
{ |
|
"models": [ |
|
// Configuration for the built-in models. You can remove any of these |
|
// if you don't want to use the default models. |
|
{ |
|
"name": "tiny", |
|
"url": "tiny" |
|
}, |
|
{ |
|
"name": "base", |
|
"url": "base" |
|
}, |
|
{ |
|
"name": "small", |
|
"url": "small" |
|
}, |
|
{ |
|
"name": "medium", |
|
"url": "medium" |
|
}, |
|
{ |
|
"name": "large", |
|
"url": "large" |
|
}, |
|
{ |
|
"name": "large-v2", |
|
"url": "large-v2" |
|
}, |
|
// Uncomment to add custom Japanese models |
|
// NOTE: For Faster-Whisper, the models must be converted to the CTranslate2 format, |
|
// see https://github.com/guillaumekln/faster-whisper |
|
//{ |
|
// "name": "whisper-large-v2-mix-jp", |
|
// "url": "arc-r/faster-whisper-large-v2-mix-jp", |
|
// // The type of the model. Can be "huggingface" or "whisper" - "whisper" is the default. |
|
// // HuggingFace models are loaded using the HuggingFace transformers library and then converted to Whisper models. |
|
// "type": "huggingface", |
|
//}, |
|
//{ |
|
// "name": "local-model", |
|
// "url": "path/to/local/model", |
|
//}, |
|
//{ |
|
// "name": "remote-model", |
|
// "url": "https://example.com/path/to/model", |
|
//} |
|
], |
|
// Configuration options that will be used if they are not specified in the command line arguments. |
|
|
|
// * WEBUI options * |
|
|
|
// Maximum audio file length in seconds, or -1 for no limit. Ignored by CLI. |
|
"input_audio_max_duration": 1800, |
|
// True to share the app on HuggingFace. |
|
"share": false, |
|
// The host or IP to bind to. If None, bind to localhost. |
|
"server_name": null, |
|
// The port to bind to. |
|
"server_port": 7860, |
|
// The number of workers to use for the web server. Use -1 to disable queueing. |
|
"queue_concurrency_count": 1, |
|
// Whether or not to automatically delete all uploaded files, to save disk space |
|
"delete_uploaded_files": true, |
|
|
|
// * General options * |
|
|
|
// The default implementation to use for Whisper. Can be "whisper" or "faster-whisper". |
|
// Note that you must either install the requirements for faster-whisper (requirements-fasterWhisper.txt) |
|
// or whisper (requirements.txt) |
|
"whisper_implementation": "faster-whisper", |
|
|
|
// The default model name. |
|
"default_model_name": "medium", |
|
// The default VAD. |
|
"default_vad": "silero-vad", |
|
// A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing. |
|
"vad_parallel_devices": "", |
|
// The number of CPU cores to use for VAD pre-processing. |
|
"vad_cpu_cores": 1, |
|
// The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout. |
|
"vad_process_timeout": 1800, |
|
// True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use. |
|
"auto_parallel": false, |
|
// Directory to save the outputs (CLI will use the current directory if not specified) |
|
"output_dir": null, |
|
// The path to save model files; uses ~/.cache/whisper by default |
|
"model_dir": null, |
|
// Device to use for PyTorch inference, or Null to use the default device |
|
"device": null, |
|
// Whether to print out the progress and debug messages |
|
"verbose": true, |
|
// Whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate') |
|
"task": "transcribe", |
|
// Language spoken in the audio, specify None to perform language detection |
|
"language": null, |
|
// The window size (in seconds) to merge voice segments |
|
"vad_merge_window": 5, |
|
// The maximum size (in seconds) of a voice segment |
|
"vad_max_merge_size": 30, |
|
// The padding (in seconds) to add to each voice segment |
|
"vad_padding": 1, |
|
// Whether or not to prepend the initial prompt to each VAD segment (prepend_all_segments), or just the first segment (prepend_first_segment) |
|
"vad_initial_prompt_mode": "prepend_first_segment", |
|
// The window size of the prompt to pass to Whisper |
|
"vad_prompt_window": 3, |
|
// Temperature to use for sampling |
|
"temperature": 0, |
|
// Number of candidates when sampling with non-zero temperature |
|
"best_of": 5, |
|
// Number of beams in beam search, only applicable when temperature is zero |
|
"beam_size": 5, |
|
// Optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search |
|
"patience": 1, |
|
// Optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default |
|
"length_penalty": null, |
|
// Comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations |
|
"suppress_tokens": "-1", |
|
// Optional text to provide as a prompt for the first window |
|
"initial_prompt": null, |
|
// If True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop |
|
"condition_on_previous_text": true, |
|
// Whether to perform inference in fp16; True by default |
|
"fp16": true, |
|
// The compute type used by faster-whisper. Can be "int8". "int16" or "float16". |
|
"compute_type": "auto", |
|
// Temperature to increase when falling back when the decoding fails to meet either of the thresholds below |
|
"temperature_increment_on_fallback": 0.2, |
|
// If the gzip compression ratio is higher than this value, treat the decoding as failed |
|
"compression_ratio_threshold": 2.4, |
|
// If the average log probability is lower than this value, treat the decoding as failed |
|
"logprob_threshold": -1.0, |
|
// If the probability of the <no-speech> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence |
|
"no_speech_threshold": 0.6, |
|
|
|
// (experimental) extract word-level timestamps and refine the results based on them |
|
"word_timestamps": false, |
|
// if word_timestamps is True, merge these punctuation symbols with the next word |
|
"prepend_punctuations": "\"\'“¿([{-", |
|
// if word_timestamps is True, merge these punctuation symbols with the previous word |
|
"append_punctuations": "\"\'.。,,!!??::”)]}、", |
|
// (requires --word_timestamps True) underline each word as it is spoken in srt and vtt |
|
"highlight_words": false, |
|
|
|
// Diarization settings |
|
"auth_token": null, |
|
// Whether to perform speaker diarization |
|
"diarization": false, |
|
// The number of speakers to detect |
|
"diarization_speakers": 2, |
|
// The minimum number of speakers to detect |
|
"diarization_min_speakers": 1, |
|
// The maximum number of speakers to detect |
|
"diarization_max_speakers": 5, |
|
} |