Adding CLI
Browse filesThis is similar to the CLI in Whisper, but it also supports
downloading URLs (also playlists), and using a VAD.
- app.py +64 -49
- cli.py +108 -0
- src/download.py +14 -7
- src/vad.py +3 -1
app.py
CHANGED
@@ -53,7 +53,7 @@ class WhisperTranscriber:
|
|
53 |
self.inputAudioMaxDuration = inputAudioMaxDuration
|
54 |
self.deleteUploadedFiles = deleteUploadedFiles
|
55 |
|
56 |
-
def
|
57 |
try:
|
58 |
source, sourceName = self.__get_source(urlData, uploadFile, microphoneData)
|
59 |
|
@@ -67,54 +67,14 @@ class WhisperTranscriber:
|
|
67 |
model = whisper.load_model(selectedModel)
|
68 |
self.model_cache[selectedModel] = model
|
69 |
|
70 |
-
#
|
71 |
-
|
72 |
-
|
73 |
-
#
|
74 |
-
if (vad == 'silero-vad'):
|
75 |
-
# Use Silero VAD and include gaps
|
76 |
-
if (self.vad_model is None):
|
77 |
-
self.vad_model = VadSileroTranscription()
|
78 |
-
|
79 |
-
process_gaps = VadSileroTranscription(transcribe_non_speech = True,
|
80 |
-
max_silent_period=vadMergeWindow, max_merge_size=vadMaxMergeSize,
|
81 |
-
segment_padding_left=vadPadding, segment_padding_right=vadPadding, copy=self.vad_model)
|
82 |
-
result = process_gaps.transcribe(source, whisperCallable)
|
83 |
-
elif (vad == 'silero-vad-skip-gaps'):
|
84 |
-
# Use Silero VAD
|
85 |
-
if (self.vad_model is None):
|
86 |
-
self.vad_model = VadSileroTranscription()
|
87 |
-
|
88 |
-
skip_gaps = VadSileroTranscription(transcribe_non_speech = False,
|
89 |
-
max_silent_period=vadMergeWindow, max_merge_size=vadMaxMergeSize,
|
90 |
-
segment_padding_left=vadPadding, segment_padding_right=vadPadding, copy=self.vad_model)
|
91 |
-
result = skip_gaps.transcribe(source, whisperCallable)
|
92 |
-
elif (vad == 'periodic-vad'):
|
93 |
-
# Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but
|
94 |
-
# it may create a break in the middle of a sentence, causing some artifacts.
|
95 |
-
periodic_vad = VadPeriodicTranscription(periodic_duration=vadMaxMergeSize)
|
96 |
-
result = periodic_vad.transcribe(source, whisperCallable)
|
97 |
-
else:
|
98 |
-
# Default VAD
|
99 |
-
result = whisperCallable(source)
|
100 |
-
|
101 |
-
text = result["text"]
|
102 |
-
|
103 |
-
language = result["language"]
|
104 |
-
languageMaxLineWidth = self.__get_max_line_width(language)
|
105 |
-
|
106 |
-
print("Max line width " + str(languageMaxLineWidth))
|
107 |
-
vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth)
|
108 |
-
srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth)
|
109 |
-
|
110 |
-
# Files that can be downloaded
|
111 |
downloadDirectory = tempfile.mkdtemp()
|
|
|
112 |
filePrefix = slugify(sourceName, allow_unicode=True)
|
113 |
-
|
114 |
-
download = []
|
115 |
-
download.append(self.__create_file(srt, downloadDirectory, filePrefix + "-subs.srt"));
|
116 |
-
download.append(self.__create_file(vtt, downloadDirectory, filePrefix + "-subs.vtt"));
|
117 |
-
download.append(self.__create_file(text, downloadDirectory, filePrefix + "-transcript.txt"));
|
118 |
|
119 |
return download, text, vtt
|
120 |
|
@@ -127,13 +87,68 @@ class WhisperTranscriber:
|
|
127 |
except ExceededMaximumDuration as e:
|
128 |
return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]"
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def clear_cache(self):
|
131 |
self.model_cache = dict()
|
|
|
132 |
|
133 |
def __get_source(self, urlData, uploadFile, microphoneData):
|
134 |
if urlData:
|
135 |
# Download from YouTube
|
136 |
-
source = download_url(urlData, self.inputAudioMaxDuration)
|
137 |
else:
|
138 |
# File input
|
139 |
source = uploadFile if uploadFile is not None else microphoneData
|
@@ -194,7 +209,7 @@ def create_ui(inputAudioMaxDuration, share=False, server_name: str = None):
|
|
194 |
|
195 |
ui_article = "Read the [documentation here](https://huggingface.co/spaces/aadnk/whisper-webui/blob/main/docs/options.md)"
|
196 |
|
197 |
-
demo = gr.Interface(fn=ui.
|
198 |
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"),
|
199 |
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
|
200 |
gr.Text(label="URL (YouTube, etc.)"),
|
|
|
53 |
self.inputAudioMaxDuration = inputAudioMaxDuration
|
54 |
self.deleteUploadedFiles = deleteUploadedFiles
|
55 |
|
56 |
+
def transcribe_webui(self, modelName, languageName, urlData, uploadFile, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding):
|
57 |
try:
|
58 |
source, sourceName = self.__get_source(urlData, uploadFile, microphoneData)
|
59 |
|
|
|
67 |
model = whisper.load_model(selectedModel)
|
68 |
self.model_cache[selectedModel] = model
|
69 |
|
70 |
+
# Execute whisper
|
71 |
+
result = self.transcribe_file(model, source, selectedLanguage, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding)
|
72 |
+
|
73 |
+
# Write result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
downloadDirectory = tempfile.mkdtemp()
|
75 |
+
|
76 |
filePrefix = slugify(sourceName, allow_unicode=True)
|
77 |
+
download, text, vtt = self.write_result(result, filePrefix, downloadDirectory)
|
|
|
|
|
|
|
|
|
78 |
|
79 |
return download, text, vtt
|
80 |
|
|
|
87 |
except ExceededMaximumDuration as e:
|
88 |
return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]"
|
89 |
|
90 |
+
def transcribe_file(self, model: whisper.Whisper, audio_path: str, language: str, task: str = None, vad: str = None,
|
91 |
+
vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, **decodeOptions: dict):
|
92 |
+
# Callable for processing an audio file
|
93 |
+
whisperCallable = lambda audio : model.transcribe(audio, language=language, task=task, **decodeOptions)
|
94 |
+
|
95 |
+
# The results
|
96 |
+
if (vad == 'silero-vad'):
|
97 |
+
# Use Silero VAD and include gaps
|
98 |
+
if (self.vad_model is None):
|
99 |
+
self.vad_model = VadSileroTranscription()
|
100 |
+
|
101 |
+
process_gaps = VadSileroTranscription(transcribe_non_speech = True,
|
102 |
+
max_silent_period=vadMergeWindow, max_merge_size=vadMaxMergeSize,
|
103 |
+
segment_padding_left=vadPadding, segment_padding_right=vadPadding, copy=self.vad_model)
|
104 |
+
result = process_gaps.transcribe(audio_path, whisperCallable)
|
105 |
+
elif (vad == 'silero-vad-skip-gaps'):
|
106 |
+
# Use Silero VAD
|
107 |
+
if (self.vad_model is None):
|
108 |
+
self.vad_model = VadSileroTranscription()
|
109 |
+
|
110 |
+
skip_gaps = VadSileroTranscription(transcribe_non_speech = False,
|
111 |
+
max_silent_period=vadMergeWindow, max_merge_size=vadMaxMergeSize,
|
112 |
+
segment_padding_left=vadPadding, segment_padding_right=vadPadding, copy=self.vad_model)
|
113 |
+
result = skip_gaps.transcribe(audio_path, whisperCallable)
|
114 |
+
elif (vad == 'periodic-vad'):
|
115 |
+
# Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but
|
116 |
+
# it may create a break in the middle of a sentence, causing some artifacts.
|
117 |
+
periodic_vad = VadPeriodicTranscription(periodic_duration=vadMaxMergeSize)
|
118 |
+
result = periodic_vad.transcribe(audio_path, whisperCallable)
|
119 |
+
else:
|
120 |
+
# Default VAD
|
121 |
+
result = whisperCallable(audio_path)
|
122 |
+
|
123 |
+
return result
|
124 |
+
|
125 |
+
def write_result(self, result: dict, source_name: str, output_dir: str):
|
126 |
+
if not os.path.exists(output_dir):
|
127 |
+
os.makedirs(output_dir)
|
128 |
+
|
129 |
+
text = result["text"]
|
130 |
+
language = result["language"]
|
131 |
+
languageMaxLineWidth = self.__get_max_line_width(language)
|
132 |
+
|
133 |
+
print("Max line width " + str(languageMaxLineWidth))
|
134 |
+
vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth)
|
135 |
+
srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth)
|
136 |
+
|
137 |
+
output_files = []
|
138 |
+
output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt"));
|
139 |
+
output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt"));
|
140 |
+
output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt"));
|
141 |
+
|
142 |
+
return output_files, text, vtt
|
143 |
+
|
144 |
def clear_cache(self):
|
145 |
self.model_cache = dict()
|
146 |
+
self.vad_model = None
|
147 |
|
148 |
def __get_source(self, urlData, uploadFile, microphoneData):
|
149 |
if urlData:
|
150 |
# Download from YouTube
|
151 |
+
source = download_url(urlData, self.inputAudioMaxDuration)[0]
|
152 |
else:
|
153 |
# File input
|
154 |
source = uploadFile if uploadFile is not None else microphoneData
|
|
|
209 |
|
210 |
ui_article = "Read the [documentation here](https://huggingface.co/spaces/aadnk/whisper-webui/blob/main/docs/options.md)"
|
211 |
|
212 |
+
demo = gr.Interface(fn=ui.transcribe_webui, description=ui_description, article=ui_article, inputs=[
|
213 |
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"),
|
214 |
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
|
215 |
gr.Text(label="URL (YouTube, etc.)"),
|
cli.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
from urllib.parse import urlparse
|
5 |
+
import warnings
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
import whisper
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from app import LANGUAGES, WhisperTranscriber
|
12 |
+
from src.download import download_url
|
13 |
+
|
14 |
+
from src.utils import optional_float, optional_int, str2bool
|
15 |
+
|
16 |
+
|
17 |
+
def cli():
|
18 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
19 |
+
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
20 |
+
parser.add_argument("--model", default="small", choices=["tiny", "base", "small", "medium", "large"], help="name of the Whisper model to use")
|
21 |
+
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
22 |
+
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
23 |
+
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
24 |
+
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
25 |
+
|
26 |
+
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
|
27 |
+
parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES), help="language spoken in the audio, specify None to perform language detection")
|
28 |
+
|
29 |
+
parser.add_argument("--vad", type=str, default="none", choices=["none", "silero-vad", "silero-vad-skip-gaps", "periodic-vad"], help="The voice activity detection algorithm to use")
|
30 |
+
parser.add_argument("--vad_merge_window", type=optional_float, default=5, help="The window size (in seconds) to merge voice segments")
|
31 |
+
parser.add_argument("--vad_max_merge_size", type=optional_float, default=150, help="The maximum size (in seconds) of a voice segment")
|
32 |
+
parser.add_argument("--vad_padding", type=optional_float, default=1, help="The padding (in seconds) to add to each voice segment")
|
33 |
+
|
34 |
+
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
|
35 |
+
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
|
36 |
+
parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
|
37 |
+
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
|
38 |
+
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple lengt normalization by default")
|
39 |
+
|
40 |
+
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
|
41 |
+
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
|
42 |
+
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
|
43 |
+
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
|
44 |
+
|
45 |
+
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
|
46 |
+
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
|
47 |
+
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
|
48 |
+
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
49 |
+
|
50 |
+
args = parser.parse_args().__dict__
|
51 |
+
model_name: str = args.pop("model")
|
52 |
+
model_dir: str = args.pop("model_dir")
|
53 |
+
output_dir: str = args.pop("output_dir")
|
54 |
+
device: str = args.pop("device")
|
55 |
+
os.makedirs(output_dir, exist_ok=True)
|
56 |
+
|
57 |
+
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
|
58 |
+
warnings.warn(f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead.")
|
59 |
+
args["language"] = "en"
|
60 |
+
|
61 |
+
temperature = args.pop("temperature")
|
62 |
+
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
|
63 |
+
if temperature_increment_on_fallback is not None:
|
64 |
+
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
|
65 |
+
else:
|
66 |
+
temperature = [temperature]
|
67 |
+
|
68 |
+
vad = args.pop("vad")
|
69 |
+
vad_merge_window = args.pop("vad_merge_window")
|
70 |
+
vad_max_merge_size = args.pop("vad_max_merge_size")
|
71 |
+
vad_padding = args.pop("vad_padding")
|
72 |
+
|
73 |
+
model = whisper.load_model(model_name, device=device, download_root=model_dir)
|
74 |
+
transcriber = WhisperTranscriber(deleteUploadedFiles=False)
|
75 |
+
|
76 |
+
for audio_path in args.pop("audio"):
|
77 |
+
sources = []
|
78 |
+
|
79 |
+
# Detect URL and download the audio
|
80 |
+
if (uri_validator(audio_path)):
|
81 |
+
# Download from YouTube/URL directly
|
82 |
+
for source_path in download_url(audio_path, maxDuration=-1, destinationDirectory=output_dir, playlistItems=None):
|
83 |
+
source_name = os.path.basename(source_path)
|
84 |
+
sources.append({ "path": source_path, "name": source_name })
|
85 |
+
else:
|
86 |
+
sources.append({ "path": audio_path, "name": os.path.basename(audio_path) })
|
87 |
+
|
88 |
+
for source in sources:
|
89 |
+
source_path = source["path"]
|
90 |
+
source_name = source["name"]
|
91 |
+
|
92 |
+
result = transcriber.transcribe_file(model, source_path, temperature=temperature,
|
93 |
+
vad=vad, vadMergeWindow=vad_merge_window, vadMaxMergeSize=vad_max_merge_size,
|
94 |
+
vadPadding=vad_padding, **args)
|
95 |
+
|
96 |
+
transcriber.write_result(result, source_name, output_dir)
|
97 |
+
|
98 |
+
transcriber.clear_cache()
|
99 |
+
|
100 |
+
def uri_validator(x):
|
101 |
+
try:
|
102 |
+
result = urlparse(x)
|
103 |
+
return all([result.scheme, result.netloc])
|
104 |
+
except:
|
105 |
+
return False
|
106 |
+
|
107 |
+
if __name__ == '__main__':
|
108 |
+
cli()
|
src/download.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from tempfile import mkdtemp
|
|
|
2 |
from yt_dlp import YoutubeDL
|
3 |
|
4 |
import yt_dlp
|
@@ -13,25 +14,28 @@ class FilenameCollectorPP(PostProcessor):
|
|
13 |
self.filenames.append(information["filepath"])
|
14 |
return [], information
|
15 |
|
16 |
-
def download_url(url: str, maxDuration: int = None):
|
17 |
try:
|
18 |
-
return _perform_download(url, maxDuration=maxDuration)
|
19 |
except yt_dlp.utils.DownloadError as e:
|
20 |
# In case of an OS error, try again with a different output template
|
21 |
if e.msg and e.msg.find("[Errno 36] File name too long") >= 0:
|
22 |
return _perform_download(url, maxDuration=maxDuration, outputTemplate="%(title).10s %(id)s.%(ext)s")
|
23 |
pass
|
24 |
|
25 |
-
def _perform_download(url: str, maxDuration: int = None, outputTemplate: str = None):
|
26 |
-
|
|
|
|
|
27 |
|
28 |
ydl_opts = {
|
29 |
"format": "bestaudio/best",
|
30 |
-
'playlist_items': '1',
|
31 |
'paths': {
|
32 |
'home': destinationDirectory
|
33 |
}
|
34 |
}
|
|
|
|
|
35 |
|
36 |
# Add output template if specified
|
37 |
if outputTemplate:
|
@@ -53,8 +57,11 @@ def _perform_download(url: str, maxDuration: int = None, outputTemplate: str = N
|
|
53 |
if len(filename_collector.filenames) <= 0:
|
54 |
raise Exception("Cannot download " + url)
|
55 |
|
56 |
-
result =
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
return result
|
60 |
|
|
|
1 |
from tempfile import mkdtemp
|
2 |
+
from typing import List
|
3 |
from yt_dlp import YoutubeDL
|
4 |
|
5 |
import yt_dlp
|
|
|
14 |
self.filenames.append(information["filepath"])
|
15 |
return [], information
|
16 |
|
17 |
+
def download_url(url: str, maxDuration: int = None, destinationDirectory: str = None, playlistItems: str = "1") -> List[str]:
|
18 |
try:
|
19 |
+
return _perform_download(url, maxDuration=maxDuration, outputTemplate=None, destinationDirectory=destinationDirectory, playlistItems=playlistItems)
|
20 |
except yt_dlp.utils.DownloadError as e:
|
21 |
# In case of an OS error, try again with a different output template
|
22 |
if e.msg and e.msg.find("[Errno 36] File name too long") >= 0:
|
23 |
return _perform_download(url, maxDuration=maxDuration, outputTemplate="%(title).10s %(id)s.%(ext)s")
|
24 |
pass
|
25 |
|
26 |
+
def _perform_download(url: str, maxDuration: int = None, outputTemplate: str = None, destinationDirectory: str = None, playlistItems: str = "1"):
|
27 |
+
# Create a temporary directory to store the downloaded files
|
28 |
+
if destinationDirectory is None:
|
29 |
+
destinationDirectory = mkdtemp()
|
30 |
|
31 |
ydl_opts = {
|
32 |
"format": "bestaudio/best",
|
|
|
33 |
'paths': {
|
34 |
'home': destinationDirectory
|
35 |
}
|
36 |
}
|
37 |
+
if (playlistItems):
|
38 |
+
ydl_opts['playlist_items'] = playlistItems
|
39 |
|
40 |
# Add output template if specified
|
41 |
if outputTemplate:
|
|
|
57 |
if len(filename_collector.filenames) <= 0:
|
58 |
raise Exception("Cannot download " + url)
|
59 |
|
60 |
+
result = []
|
61 |
+
|
62 |
+
for filename in filename_collector.filenames:
|
63 |
+
result.append(filename)
|
64 |
+
print("Downloaded " + filename)
|
65 |
|
66 |
return result
|
67 |
|
src/vad.py
CHANGED
@@ -188,7 +188,9 @@ class AbstractTranscription(ABC):
|
|
188 |
|
189 |
result.append(current_segment)
|
190 |
|
191 |
-
|
|
|
|
|
192 |
|
193 |
# Also include total duration if specified
|
194 |
if (total_duration is not None):
|
|
|
188 |
|
189 |
result.append(current_segment)
|
190 |
|
191 |
+
# Add last segment
|
192 |
+
last_segment = segments[-1]
|
193 |
+
result.append(last_segment)
|
194 |
|
195 |
# Also include total duration if specified
|
196 |
if (total_duration is not None):
|