Fix merging of VAD segments
Browse filesAlso expand VAD segments rather than running whisper
on non-speech segments. That way, whisper will use the
previous section as a prompt, in case there is speech in
the non-speech section after all.
- src/vad.py +61 -13
src/vad.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from abc import ABC, abstractmethod
|
2 |
from collections import Counter
|
3 |
from dis import dis
|
|
|
4 |
from typing import Any, Iterator, List, Dict
|
5 |
|
6 |
from pprint import pprint
|
@@ -27,7 +28,7 @@ MAX_SILENT_PERIOD = 10 # seconds
|
|
27 |
MAX_MERGE_SIZE = 150 # Do not create segments larger than 2.5 minutes
|
28 |
|
29 |
SEGMENT_PADDING_LEFT = 1 # Start detected text segment early
|
30 |
-
SEGMENT_PADDING_RIGHT =
|
31 |
|
32 |
# Whether to attempt to transcribe non-speech
|
33 |
TRANSCRIBE_NON_SPEECH = False
|
@@ -91,7 +92,9 @@ class AbstractTranscription(ABC):
|
|
91 |
|
92 |
if self.transcribe_non_speech:
|
93 |
max_audio_duration = float(ffmpeg.probe(audio)["format"]["duration"])
|
94 |
-
|
|
|
|
|
95 |
|
96 |
print("Transcribing non-speech:")
|
97 |
pprint(merged)
|
@@ -107,7 +110,7 @@ class AbstractTranscription(ABC):
|
|
107 |
for segment in merged:
|
108 |
segment_start = segment['start']
|
109 |
segment_end = segment['end']
|
110 |
-
|
111 |
|
112 |
segment_duration = segment_end - segment_start
|
113 |
|
@@ -116,12 +119,9 @@ class AbstractTranscription(ABC):
|
|
116 |
|
117 |
segment_audio = self.get_audio_segment(audio, start_time = str(segment_start), duration = str(segment_duration))
|
118 |
|
119 |
-
print("Running whisper from ", format_timestamp(segment_start), " to ", format_timestamp(segment_end), ", duration: ", segment_duration, "
|
120 |
-
|
121 |
-
|
122 |
-
segment_result = whisperCallable(segment_audio)
|
123 |
-
else:
|
124 |
-
segment_result = whisperCallable(segment_audio)
|
125 |
adjusted_segments = self.adjust_whisper_timestamp(segment_result["segments"], adjust_seconds=segment_start, max_source_time=segment_duration)
|
126 |
|
127 |
# Append to output
|
@@ -162,6 +162,44 @@ class AbstractTranscription(ABC):
|
|
162 |
|
163 |
return result
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
def adjust_whisper_timestamp(self, segments: Iterator[dict], adjust_seconds: float, max_source_time: float = None):
|
166 |
result = []
|
167 |
|
@@ -184,17 +222,27 @@ class AbstractTranscription(ABC):
|
|
184 |
return result
|
185 |
|
186 |
def pad_timestamps(self, timestamps: List[Dict[str, Any]], padding_left: float, padding_right: float):
|
|
|
|
|
187 |
result = []
|
188 |
|
189 |
-
for
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
192 |
|
193 |
if padding_left is not None:
|
194 |
-
segment_start = max(0, segment_start - padding_left)
|
195 |
if padding_right is not None:
|
196 |
segment_end = segment_end + padding_right
|
197 |
|
|
|
|
|
|
|
|
|
198 |
result.append({ 'start': segment_start, 'end': segment_end })
|
199 |
|
200 |
return result
|
|
|
1 |
from abc import ABC, abstractmethod
|
2 |
from collections import Counter
|
3 |
from dis import dis
|
4 |
+
import re
|
5 |
from typing import Any, Iterator, List, Dict
|
6 |
|
7 |
from pprint import pprint
|
|
|
28 |
MAX_MERGE_SIZE = 150 # Do not create segments larger than 2.5 minutes
|
29 |
|
30 |
SEGMENT_PADDING_LEFT = 1 # Start detected text segment early
|
31 |
+
SEGMENT_PADDING_RIGHT = 1 # End detected segments late
|
32 |
|
33 |
# Whether to attempt to transcribe non-speech
|
34 |
TRANSCRIBE_NON_SPEECH = False
|
|
|
92 |
|
93 |
if self.transcribe_non_speech:
|
94 |
max_audio_duration = float(ffmpeg.probe(audio)["format"]["duration"])
|
95 |
+
|
96 |
+
# Expand segments to include the gaps between them
|
97 |
+
merged = self.expand_gaps(merged, total_duration=max_audio_duration)
|
98 |
|
99 |
print("Transcribing non-speech:")
|
100 |
pprint(merged)
|
|
|
110 |
for segment in merged:
|
111 |
segment_start = segment['start']
|
112 |
segment_end = segment['end']
|
113 |
+
segment_expand_amount = segment.get('expand_amount', 0)
|
114 |
|
115 |
segment_duration = segment_end - segment_start
|
116 |
|
|
|
119 |
|
120 |
segment_audio = self.get_audio_segment(audio, start_time = str(segment_start), duration = str(segment_duration))
|
121 |
|
122 |
+
print("Running whisper from ", format_timestamp(segment_start), " to ", format_timestamp(segment_end), ", duration: ", segment_duration, "expanded: ", segment_expand_amount)
|
123 |
+
segment_result = whisperCallable(segment_audio)
|
124 |
+
|
|
|
|
|
|
|
125 |
adjusted_segments = self.adjust_whisper_timestamp(segment_result["segments"], adjust_seconds=segment_start, max_source_time=segment_duration)
|
126 |
|
127 |
# Append to output
|
|
|
162 |
|
163 |
return result
|
164 |
|
165 |
+
# Expand the end time of each segment to the start of the next segment
|
166 |
+
def expand_gaps(self, segments: List[Dict[str, Any]], total_duration: float):
|
167 |
+
result = []
|
168 |
+
|
169 |
+
if len(segments) == 0:
|
170 |
+
return result
|
171 |
+
|
172 |
+
# Add gap at the beginning if needed
|
173 |
+
if (segments[0]['start'] > 0):
|
174 |
+
result.append({ 'start': 0, 'end': segments[0]['start'], 'gap': True } )
|
175 |
+
|
176 |
+
for i in range(len(segments) - 1):
|
177 |
+
current_segment = segments[i]
|
178 |
+
next_segment = segments[i + 1]
|
179 |
+
|
180 |
+
delta = next_segment['start'] - current_segment['end']
|
181 |
+
|
182 |
+
# Expand if the gap actually exists
|
183 |
+
if (delta >= 0):
|
184 |
+
current_segment = current_segment.copy()
|
185 |
+
current_segment['expand_amount'] = delta
|
186 |
+
current_segment['end'] = next_segment['start']
|
187 |
+
|
188 |
+
result.append(current_segment)
|
189 |
+
|
190 |
+
last_segment = result[-1]
|
191 |
+
|
192 |
+
# Also include total duration if specified
|
193 |
+
if (total_duration is not None):
|
194 |
+
last_segment = result[-1]
|
195 |
+
|
196 |
+
if (last_segment['end'] < total_duration):
|
197 |
+
last_segment = last_segment.copy()
|
198 |
+
last_segment['end'] = total_duration
|
199 |
+
result[-1] = last_segment
|
200 |
+
|
201 |
+
return result
|
202 |
+
|
203 |
def adjust_whisper_timestamp(self, segments: Iterator[dict], adjust_seconds: float, max_source_time: float = None):
|
204 |
result = []
|
205 |
|
|
|
222 |
return result
|
223 |
|
224 |
def pad_timestamps(self, timestamps: List[Dict[str, Any]], padding_left: float, padding_right: float):
|
225 |
+
if (padding_left == 0 and padding_right == 0):
|
226 |
+
return timestamps
|
227 |
result = []
|
228 |
|
229 |
+
for i in range(len(timestamps)):
|
230 |
+
prev_entry = timestamps[i - 1] if i > 0 else None
|
231 |
+
curr_entry = timestamps[i]
|
232 |
+
next_entry = timestamps[i + 1] if i < len(timestamps) - 1 else None
|
233 |
+
|
234 |
+
segment_start = curr_entry['start']
|
235 |
+
segment_end = curr_entry['end']
|
236 |
|
237 |
if padding_left is not None:
|
238 |
+
segment_start = max(prev_entry['end'] if prev_entry else 0, segment_start - padding_left)
|
239 |
if padding_right is not None:
|
240 |
segment_end = segment_end + padding_right
|
241 |
|
242 |
+
# Do not pad past the next segment
|
243 |
+
if (next_entry is not None):
|
244 |
+
segment_end = min(next_entry['start'], segment_end)
|
245 |
+
|
246 |
result.append({ 'start': segment_start, 'end': segment_end })
|
247 |
|
248 |
return result
|