Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytube as pt
|
3 |
+
from transformers import pipeline
|
4 |
+
import json
|
5 |
+
import whisper_timestamped as whispertime
|
6 |
+
from pydub import AudioSegment
|
7 |
+
from spleeter.separator import Separator
|
8 |
+
import os
|
9 |
+
from profanity_check import predict
|
10 |
+
import sys
|
11 |
+
import tempfile
|
12 |
+
import uuid
|
13 |
+
import shutil
|
14 |
+
import json
|
15 |
+
|
16 |
+
import streamlit as st
|
17 |
+
|
18 |
+
|
19 |
+
# CORE #
|
20 |
+
|
21 |
+
MODEL_NAME = "openai/whisper-large-v2"
|
22 |
+
|
23 |
+
PROFANE_WORDS = ["falkona", "fuck"]
|
24 |
+
|
25 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
+
|
27 |
+
def create_tmp_copy_of_file(file, dir=None):
|
28 |
+
"""
|
29 |
+
Creates a temporary copy of the file and returns the path to the copy.
|
30 |
+
:param file: the path to the file
|
31 |
+
:param dir: optional directory to place the copy in
|
32 |
+
:return: path to the temporary copy
|
33 |
+
"""
|
34 |
+
if isinstance(file, dict):
|
35 |
+
file_path = file["path"]
|
36 |
+
else:
|
37 |
+
file_path = file
|
38 |
+
|
39 |
+
if dir is None:
|
40 |
+
dir = tempfile.gettempdir()
|
41 |
+
|
42 |
+
file_name = os.path.basename(file_path)
|
43 |
+
tmp_path = os.path.join(dir, f"{str(uuid.uuid4())}_{file_name}")
|
44 |
+
shutil.copy2(file_path, tmp_path)
|
45 |
+
|
46 |
+
return json.dumps(tmp_path).strip('"')
|
47 |
+
|
48 |
+
def source_separation(input_file, output_folder="separated_audio"):
|
49 |
+
separator = Separator('spleeter:2stems')
|
50 |
+
separator.separate_to_file(input_file, output_folder)
|
51 |
+
return f"{output_folder}/{os.path.splitext(os.path.basename(input_file))[0]}"
|
52 |
+
|
53 |
+
def process_audio(input_file, model_size='tiny', verbose=False, play_output=False):
|
54 |
+
if not os.path.isfile(input_file):
|
55 |
+
print('Error: input file not found')
|
56 |
+
sys.exit()
|
57 |
+
|
58 |
+
stems_dir = source_separation(input_file)
|
59 |
+
vocal_stem = os.path.join(stems_dir, 'vocals.wav')
|
60 |
+
instr_stem = os.path.join(stems_dir, 'accompaniment.wav')
|
61 |
+
|
62 |
+
model = whispertime.load_model(model_size, device=device)
|
63 |
+
result = whispertime.transcribe(model, vocal_stem, language="en")
|
64 |
+
|
65 |
+
if verbose:
|
66 |
+
print('\nTranscribed text:')
|
67 |
+
print(result['text']+'\n')
|
68 |
+
|
69 |
+
print(result["text"])
|
70 |
+
|
71 |
+
profane_indices = predict(result["text"].split())
|
72 |
+
profanities = [word for word, is_profane in zip(result["text"].split(), profane_indices) if is_profane]
|
73 |
+
if not profanities:
|
74 |
+
print(f'No profanities detected found in {input_file} - exiting')
|
75 |
+
# sys.exit()
|
76 |
+
if verbose:
|
77 |
+
print('Profanities found in text:')
|
78 |
+
print(profanities)
|
79 |
+
|
80 |
+
vocals = AudioSegment.from_wav(vocal_stem)
|
81 |
+
|
82 |
+
segments = result["segments"]
|
83 |
+
|
84 |
+
for segment in segments:
|
85 |
+
words = segment["words"]
|
86 |
+
for word in words:
|
87 |
+
if word["text"].lower() in PROFANE_WORDS:
|
88 |
+
start_time = int(word["start"] * 1000)
|
89 |
+
end_time = int(word["end"] * 1000)
|
90 |
+
silence = AudioSegment.silent(duration=(end_time - start_time))
|
91 |
+
vocals = vocals[:start_time] + silence + vocals[end_time:]
|
92 |
+
|
93 |
+
mix = AudioSegment.from_wav(instr_stem).overlay(vocals)
|
94 |
+
print("#### \n\n" + input_file)
|
95 |
+
outpath = input_file.replace('.mp3', '_masked.mp3').replace('.wav', '_masked.wav')
|
96 |
+
print("#### \n\n" + outpath)
|
97 |
+
# if input_file.endswith('.wav'):
|
98 |
+
# mix.export(outpath, format="wav")
|
99 |
+
# elif input_file.endswith('.mp3'):
|
100 |
+
final_mix = mix.export(outpath, format="wav")
|
101 |
+
|
102 |
+
print(f'Mixed file written to: {outpath}')
|
103 |
+
|
104 |
+
# out = create_tmp_copy_of_file(outpath)
|
105 |
+
print('\n Returning final mix: ', final_mix)
|
106 |
+
return outpath
|
107 |
+
|
108 |
+
# try getting it to work just returning the transcribed text
|
109 |
+
# return result["text"]
|
110 |
+
|
111 |
+
def transcribe(microphone=None, file_upload=None):
|
112 |
+
if (microphone is not None) and (file_upload is not None):
|
113 |
+
warn_output = (
|
114 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
115 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
116 |
+
)
|
117 |
+
elif (microphone is None) and (file_upload is None):
|
118 |
+
return "ERROR: You have to e~ither use the microphone or upload an audio file"
|
119 |
+
|
120 |
+
file = microphone if microphone is not None else file_upload
|
121 |
+
processed_file = process_audio(file)
|
122 |
+
print('File sucessfully processed:, ', processed_file)
|
123 |
+
# audio = AudioSegment.from_file(processed_file, format="wav").export()
|
124 |
+
audio = processed_file
|
125 |
+
|
126 |
+
return str(audio)
|
127 |
+
|
128 |
+
def _return_yt_html_embed(yt_url):
|
129 |
+
video_id = yt_url.split("?v=")[-1]
|
130 |
+
HTML_str = (
|
131 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
132 |
+
" </center>"
|
133 |
+
)
|
134 |
+
return HTML_str
|
135 |
+
|
136 |
+
def yt_transcribe(yt_url):
|
137 |
+
yt = pt.YouTube(yt_url)
|
138 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
139 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
140 |
+
stream.download(filename="audio.mp3")
|
141 |
+
|
142 |
+
processed_file = process_audio("audio.mp3")
|
143 |
+
audio = AudioSegment.from_file(processed_file, format="mp3")
|
144 |
+
|
145 |
+
return html_embed_str, audio
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
# STREAMLIT #
|
151 |
+
|
152 |
+
import streamlit as st
|
153 |
+
|
154 |
+
st.title("Whisper Large V2: Transcribe Audio")
|
155 |
+
|
156 |
+
f"""
|
157 |
+
Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the
|
158 |
+
checkpoint {MODEL_NAME} and 🤗 Transformers to transcribe audio files of arbitrary length.
|
159 |
+
"""
|
160 |
+
|
161 |
+
tab1, tab2 = st.tabs(["Transcribe Audio", "Transcribe YouTube"])
|
162 |
+
|
163 |
+
with tab1: # file upload
|
164 |
+
uploaded_files = st.file_uploader("Upload your audio file here", type=["mp3", "wav"], help="Drag and drop or click to choose file")
|
165 |
+
if uploaded_files is not None:
|
166 |
+
bytes_data = uploaded_files.read()
|
167 |
+
|
168 |
+
st.write("Your uploaded file")
|
169 |
+
st.audio(bytes_data)
|
170 |
+
# format can be specified, default is wav
|
171 |
+
# st.audio(bytes_data, format="audio/mp3")
|
172 |
+
|
173 |
+
st.markdown("---")
|
174 |
+
st.write("## Your processed file")
|
175 |
+
with st.spinner("...is being processed"):
|
176 |
+
|
177 |
+
# uploaded file is stored in RAM, so save it to a file to pass into `transcribe`
|
178 |
+
with open(uploaded_files.name, "wb") as f:
|
179 |
+
f.write((uploaded_files).getbuffer())
|
180 |
+
|
181 |
+
processed_audio = transcribe(microphone=None, file_upload=uploaded_files.name)
|
182 |
+
|
183 |
+
audio_file = open(processed_audio, 'rb')
|
184 |
+
audio_bytes2 = audio_file.read()
|
185 |
+
st.audio(audio_bytes2)
|
186 |
+
|
187 |
+
with tab2: # youtube
|
188 |
+
link = st.text_input("Paste your YouTube link", placeholder="https://www.youtube.com/watch?v=EuEe3WKpbCo")
|
189 |
+
if link != "":
|
190 |
+
|
191 |
+
try:
|
192 |
+
st.video(link)
|
193 |
+
except:
|
194 |
+
st.warning("Not a video")
|
195 |
+
st.stop()
|
196 |
+
|
197 |
+
with st.spinner("YouTube link is being processed"):
|
198 |
+
html_embed_str, audio = yt_transcribe(link)
|
199 |
+
|
200 |
+
audio_file = open(audio, 'rb')
|
201 |
+
audio_bytes_yt = audio_file.read()
|
202 |
+
st.audio(audio_bytes_yt)
|