Spaces:
Running
Running
from typing import Tuple | |
import requests | |
import random,os | |
import numpy as np | |
import gradio as gr | |
import spaces | |
import torch | |
from PIL import Image | |
from diffusers import FluxInpaintPipeline | |
from huggingface_hub import login | |
login(token=os.getenv("TOKEN")) | |
MAX_SEED = np.iinfo(np.int32).max | |
IMAGE_SIZE = 1024 | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
def resize_image_dimensions( | |
original_resolution_wh: Tuple[int, int], | |
maximum_dimension: int = IMAGE_SIZE | |
) -> Tuple[int, int]: | |
width, height = original_resolution_wh | |
# if width <= maximum_dimension and height <= maximum_dimension: | |
# width = width - (width % 32) | |
# height = height - (height % 32) | |
# return width, height | |
if width > height: | |
scaling_factor = maximum_dimension / width | |
else: | |
scaling_factor = maximum_dimension / height | |
new_width = int(width * scaling_factor) | |
new_height = int(height * scaling_factor) | |
new_width = new_width - (new_width % 32) | |
new_height = new_height - (new_height % 32) | |
return new_width, new_height | |
def I2I( | |
input_image_editor: dict, | |
input_text: str, | |
seed_slicer: int, | |
randomize_seed_checkbox: bool, | |
strength_slider: float, | |
num_inference_steps_slider: int, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
if not input_text: | |
gr.Info("Please enter a text prompt.") | |
return None, None | |
image = input_image_editor['background'] | |
mask = input_image_editor['layers'][0] | |
if not image: | |
gr.Info("Please upload an image.") | |
return None, None | |
if not mask: | |
gr.Info("Please draw a mask on the image.") | |
return None, None | |
pipe = FluxInpaintPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(DEVICE) | |
width, height = resize_image_dimensions(original_resolution_wh=image.size) | |
resized_image = image.resize((width, height), Image.LANCZOS) | |
resized_mask = mask.resize((width, height), Image.LANCZOS) | |
if randomize_seed_checkbox: | |
seed_slicer = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed_slicer) | |
result = pipe( | |
prompt=input_text, | |
image=resized_image, | |
mask_image=resized_mask, | |
width=width, | |
height=height, | |
strength=strength_slider, | |
generator=generator, | |
num_inference_steps=num_inference_steps_slider | |
).images[0] | |
print('INFERENCE DONE') | |
return result, resized_mask |