OmPrakashSingh1704 commited on
Commit
2893544
·
1 Parent(s): e098fac
options/Banner_Model/Image2Image.py CHANGED
@@ -8,10 +8,6 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
8
  print(f"Using device for I2I: {device}")
9
 
10
  # Load the inpainting pipeline
11
- pipe = AutoPipelineForInpainting.from_pretrained(
12
- "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
13
- torch_dtype=torch.float16, variant="fp16").to(device)
14
-
15
 
16
  def resize_image(image, height, width):
17
  """Resize image tensor to the desired height and width."""
@@ -30,6 +26,11 @@ def dummy(img):
30
 
31
 
32
  def I2I(prompt, image, width=1024, height=1024, guidance_scale=8.0, num_inference_steps=20, strength=0.99):
 
 
 
 
 
33
  img_url, mask = dummy(image)
34
 
35
  # Resize image and mask to the target dimensions (height x width)
 
8
  print(f"Using device for I2I: {device}")
9
 
10
  # Load the inpainting pipeline
 
 
 
 
11
 
12
  def resize_image(image, height, width):
13
  """Resize image tensor to the desired height and width."""
 
26
 
27
 
28
  def I2I(prompt, image, width=1024, height=1024, guidance_scale=8.0, num_inference_steps=20, strength=0.99):
29
+
30
+ pipe = AutoPipelineForInpainting.from_pretrained(
31
+ "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
32
+ torch_dtype=torch.float16, variant="fp16").to(device)
33
+
34
  img_url, mask = dummy(image)
35
 
36
  # Resize image and mask to the target dimensions (height x width)
options/Banner_Model/Image2Image_2.py CHANGED
@@ -5,17 +5,18 @@ from PIL import Image
5
 
6
  device= "cuda" if torch.cuda.is_available() else "cpu"
7
  print("Using device for I2I_2:", device)
8
- processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
9
 
10
- checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_lineart"
11
- controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(device)
12
- pipe = StableDiffusionControlNetPipeline.from_pretrained(
13
- "radames/stable-diffusion-v1-5-img2img", controlnet=controlnet, torch_dtype=torch.float16
14
- ).to(device)
15
- pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
16
- # pipe.enable_model_cpu_offload()
17
 
18
  def I2I_2(image, prompt,size,num_inference_steps):
 
 
 
 
 
 
 
 
 
19
  if not isinstance(image, Image.Image):
20
  image = Image.fromarray(image)
21
  image.resize((size,size))
 
5
 
6
  device= "cuda" if torch.cuda.is_available() else "cpu"
7
  print("Using device for I2I_2:", device)
 
8
 
 
 
 
 
 
 
 
9
 
10
  def I2I_2(image, prompt,size,num_inference_steps):
11
+ processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
12
+
13
+ checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_lineart"
14
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(device)
15
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
16
+ "radames/stable-diffusion-v1-5-img2img", controlnet=controlnet, torch_dtype=torch.float16
17
+ ).to(device)
18
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
19
+ pipe.enable_model_cpu_offload()
20
  if not isinstance(image, Image.Image):
21
  image = Image.fromarray(image)
22
  image.resize((size,size))
options/Video_model/Model.py CHANGED
@@ -7,17 +7,19 @@ login(token=os.getenv("TOKEN"))
7
  # Check if CUDA (GPU) is available, otherwise use CPU
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
 
10
- # Load the pipeline and move it to the appropriate device (GPU or CPU)
11
- pipeline = StableVideoDiffusionPipeline.from_pretrained(
12
- "stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float32
13
- ).to(device)
14
-
15
- # Enable model offloading if using the CPU
16
- if device == "cpu":
17
- pipeline.enable_model_cpu_offload()
18
 
19
  # Function to generate the video
20
  def Video(image):
 
 
 
 
 
 
 
 
 
 
21
  image = Image.fromarray(image)
22
  image = image.resize((1024, 576))
23
 
 
7
  # Check if CUDA (GPU) is available, otherwise use CPU
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
 
 
 
 
 
 
 
 
 
10
 
11
  # Function to generate the video
12
  def Video(image):
13
+
14
+
15
+ pipeline = StableVideoDiffusionPipeline.from_pretrained(
16
+ "stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float32
17
+ ).to(device)
18
+
19
+ # Enable model offloading if using the CPU
20
+ if device == "cpu":
21
+ pipeline.enable_model_cpu_offload()
22
+
23
  image = Image.fromarray(image)
24
  image = image.resize((1024, 576))
25
 
options/Video_model/__pycache__/Model.cpython-310.pyc CHANGED
Binary files a/options/Video_model/__pycache__/Model.cpython-310.pyc and b/options/Video_model/__pycache__/Model.cpython-310.pyc differ