Spaces:
Running
Running
OmPrakashSingh1704
commited on
Commit
·
c10fc76
1
Parent(s):
94a2d08
update
Browse files
options/Banner_Model/__pycache__/Image2Image_2.cpython-310.pyc
CHANGED
Binary files a/options/Banner_Model/__pycache__/Image2Image_2.cpython-310.pyc and b/options/Banner_Model/__pycache__/Image2Image_2.cpython-310.pyc differ
|
|
options/Video_model/__pycache__/Model.cpython-310.pyc
CHANGED
Binary files a/options/Video_model/__pycache__/Model.cpython-310.pyc and b/options/Video_model/__pycache__/Model.cpython-310.pyc differ
|
|
options/Video_model/tdd_svd_scheduler.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from diffusers.utils import BaseOutput, logging
|
9 |
+
from diffusers.utils.torch_utils import randn_tensor
|
10 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
11 |
+
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class TDDSVDStochasticIterativeSchedulerOutput(BaseOutput):
|
18 |
+
"""
|
19 |
+
Output class for the scheduler's `step` function.
|
20 |
+
Args:
|
21 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
22 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
23 |
+
denoising loop.
|
24 |
+
"""
|
25 |
+
|
26 |
+
prev_sample: torch.FloatTensor
|
27 |
+
|
28 |
+
|
29 |
+
class TDDSVDStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
|
30 |
+
"""
|
31 |
+
Multistep and onestep sampling for consistency models.
|
32 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
33 |
+
methods the library implements for all schedulers such as loading and saving.
|
34 |
+
Args:
|
35 |
+
num_train_timesteps (`int`, defaults to 40):
|
36 |
+
The number of diffusion steps to train the model.
|
37 |
+
sigma_min (`float`, defaults to 0.002):
|
38 |
+
Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
|
39 |
+
sigma_max (`float`, defaults to 80.0):
|
40 |
+
Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
|
41 |
+
sigma_data (`float`, defaults to 0.5):
|
42 |
+
The standard deviation of the data distribution from the EDM
|
43 |
+
[paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
|
44 |
+
s_noise (`float`, defaults to 1.0):
|
45 |
+
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
|
46 |
+
1.011]. Defaults to 1.0 from the original implementation.
|
47 |
+
rho (`float`, defaults to 7.0):
|
48 |
+
The parameter for calculating the Karras sigma schedule from the EDM
|
49 |
+
[paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
|
50 |
+
clip_denoised (`bool`, defaults to `True`):
|
51 |
+
Whether to clip the denoised outputs to `(-1, 1)`.
|
52 |
+
timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
|
53 |
+
An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
|
54 |
+
increasing order.
|
55 |
+
"""
|
56 |
+
|
57 |
+
order = 1
|
58 |
+
|
59 |
+
@register_to_config
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
num_train_timesteps: int = 40,
|
63 |
+
sigma_min: float = 0.002,
|
64 |
+
sigma_max: float = 80.0,
|
65 |
+
sigma_data: float = 0.5,
|
66 |
+
s_noise: float = 1.0,
|
67 |
+
rho: float = 7.0,
|
68 |
+
clip_denoised: bool = True,
|
69 |
+
eta: float = 0.3,
|
70 |
+
):
|
71 |
+
# standard deviation of the initial noise distribution
|
72 |
+
self.init_noise_sigma = (sigma_max**2 + 1) ** 0.5
|
73 |
+
# self.init_noise_sigma = sigma_max
|
74 |
+
|
75 |
+
ramp = np.linspace(0, 1, num_train_timesteps)
|
76 |
+
sigmas = self._convert_to_karras(ramp)
|
77 |
+
sigmas = np.concatenate([sigmas, np.array([0])])
|
78 |
+
timesteps = self.sigma_to_t(sigmas)
|
79 |
+
|
80 |
+
# setable values
|
81 |
+
self.num_inference_steps = None
|
82 |
+
self.sigmas = torch.from_numpy(sigmas)
|
83 |
+
self.timesteps = torch.from_numpy(timesteps)
|
84 |
+
self.custom_timesteps = False
|
85 |
+
self.is_scale_input_called = False
|
86 |
+
self._step_index = None
|
87 |
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
88 |
+
|
89 |
+
self.set_eta(eta)
|
90 |
+
self.original_timesteps = self.timesteps.clone()
|
91 |
+
self.original_sigmas = self.sigmas.clone()
|
92 |
+
|
93 |
+
|
94 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
95 |
+
if schedule_timesteps is None:
|
96 |
+
schedule_timesteps = self.timesteps
|
97 |
+
|
98 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
99 |
+
return indices.item()
|
100 |
+
|
101 |
+
@property
|
102 |
+
def step_index(self):
|
103 |
+
"""
|
104 |
+
The index counter for current timestep. It will increae 1 after each scheduler step.
|
105 |
+
"""
|
106 |
+
return self._step_index
|
107 |
+
|
108 |
+
def scale_model_input(
|
109 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
110 |
+
) -> torch.FloatTensor:
|
111 |
+
"""
|
112 |
+
Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.
|
113 |
+
Args:
|
114 |
+
sample (`torch.FloatTensor`):
|
115 |
+
The input sample.
|
116 |
+
timestep (`float` or `torch.FloatTensor`):
|
117 |
+
The current timestep in the diffusion chain.
|
118 |
+
Returns:
|
119 |
+
`torch.FloatTensor`:
|
120 |
+
A scaled input sample.
|
121 |
+
"""
|
122 |
+
# Get sigma corresponding to timestep
|
123 |
+
if self.step_index is None:
|
124 |
+
self._init_step_index(timestep)
|
125 |
+
|
126 |
+
sigma = self.sigmas[self.step_index]
|
127 |
+
sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
128 |
+
|
129 |
+
self.is_scale_input_called = True
|
130 |
+
return sample
|
131 |
+
|
132 |
+
# def _sigma_to_t(self, sigma, log_sigmas):
|
133 |
+
# # get log sigma
|
134 |
+
# log_sigma = np.log(np.maximum(sigma, 1e-10))
|
135 |
+
|
136 |
+
# # get distribution
|
137 |
+
# dists = log_sigma - log_sigmas[:, np.newaxis]
|
138 |
+
|
139 |
+
# # get sigmas range
|
140 |
+
# low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
141 |
+
# high_idx = low_idx + 1
|
142 |
+
|
143 |
+
# low = log_sigmas[low_idx]
|
144 |
+
# high = log_sigmas[high_idx]
|
145 |
+
|
146 |
+
# # interpolate sigmas
|
147 |
+
# w = (low - log_sigma) / (low - high)
|
148 |
+
# w = np.clip(w, 0, 1)
|
149 |
+
|
150 |
+
# # transform interpolation to time range
|
151 |
+
# t = (1 - w) * low_idx + w * high_idx
|
152 |
+
# t = t.reshape(sigma.shape)
|
153 |
+
# return t
|
154 |
+
|
155 |
+
def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
|
156 |
+
"""
|
157 |
+
Gets scaled timesteps from the Karras sigmas for input to the consistency model.
|
158 |
+
Args:
|
159 |
+
sigmas (`float` or `np.ndarray`):
|
160 |
+
A single Karras sigma or an array of Karras sigmas.
|
161 |
+
Returns:
|
162 |
+
`float` or `np.ndarray`:
|
163 |
+
A scaled input timestep or scaled input timestep array.
|
164 |
+
"""
|
165 |
+
if not isinstance(sigmas, np.ndarray):
|
166 |
+
sigmas = np.array(sigmas, dtype=np.float64)
|
167 |
+
|
168 |
+
timesteps = 0.25 * np.log(sigmas + 1e-44)
|
169 |
+
|
170 |
+
return timesteps
|
171 |
+
|
172 |
+
def set_timesteps(
|
173 |
+
self,
|
174 |
+
num_inference_steps: Optional[int] = None,
|
175 |
+
device: Union[str, torch.device] = None,
|
176 |
+
timesteps: Optional[List[int]] = None,
|
177 |
+
):
|
178 |
+
"""
|
179 |
+
Sets the timesteps used for the diffusion chain (to be run before inference).
|
180 |
+
Args:
|
181 |
+
num_inference_steps (`int`):
|
182 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
183 |
+
device (`str` or `torch.device`, *optional*):
|
184 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
185 |
+
timesteps (`List[int]`, *optional*):
|
186 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
187 |
+
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
|
188 |
+
`num_inference_steps` must be `None`.
|
189 |
+
"""
|
190 |
+
if num_inference_steps is None and timesteps is None:
|
191 |
+
raise ValueError(
|
192 |
+
"Exactly one of `num_inference_steps` or `timesteps` must be supplied."
|
193 |
+
)
|
194 |
+
|
195 |
+
if num_inference_steps is not None and timesteps is not None:
|
196 |
+
raise ValueError(
|
197 |
+
"Can only pass one of `num_inference_steps` or `timesteps`."
|
198 |
+
)
|
199 |
+
|
200 |
+
# Follow DDPMScheduler custom timesteps logic
|
201 |
+
if timesteps is not None:
|
202 |
+
for i in range(1, len(timesteps)):
|
203 |
+
if timesteps[i] >= timesteps[i - 1]:
|
204 |
+
raise ValueError("`timesteps` must be in descending order.")
|
205 |
+
|
206 |
+
if timesteps[0] >= self.config.num_train_timesteps:
|
207 |
+
raise ValueError(
|
208 |
+
f"`timesteps` must start before `self.config.train_timesteps`:"
|
209 |
+
f" {self.config.num_train_timesteps}."
|
210 |
+
)
|
211 |
+
|
212 |
+
timesteps = np.array(timesteps, dtype=np.int64)
|
213 |
+
self.custom_timesteps = True
|
214 |
+
else:
|
215 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
216 |
+
raise ValueError(
|
217 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
218 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
219 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
220 |
+
)
|
221 |
+
|
222 |
+
self.num_inference_steps = num_inference_steps
|
223 |
+
|
224 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
225 |
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().copy().astype(np.int64)
|
226 |
+
self.custom_timesteps = False
|
227 |
+
|
228 |
+
self.original_indices = timesteps
|
229 |
+
# Map timesteps to Karras sigmas directly for multistep sampling
|
230 |
+
# See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
|
231 |
+
num_train_timesteps = self.config.num_train_timesteps
|
232 |
+
ramp = timesteps.copy()
|
233 |
+
ramp = ramp / (num_train_timesteps - 1)
|
234 |
+
sigmas = self._convert_to_karras(ramp)
|
235 |
+
timesteps = self.sigma_to_t(sigmas)
|
236 |
+
|
237 |
+
sigmas = np.concatenate([sigmas, [0]]).astype(np.float32)
|
238 |
+
self.sigmas = torch.from_numpy(sigmas).to(device=device)
|
239 |
+
|
240 |
+
if str(device).startswith("mps"):
|
241 |
+
# mps does not support float64
|
242 |
+
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
|
243 |
+
else:
|
244 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device)
|
245 |
+
|
246 |
+
self._step_index = None
|
247 |
+
self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
248 |
+
|
249 |
+
# Modified _convert_to_karras implementation that takes in ramp as argument
|
250 |
+
def _convert_to_karras(self, ramp):
|
251 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
252 |
+
|
253 |
+
sigma_min: float = self.config.sigma_min
|
254 |
+
sigma_max: float = self.config.sigma_max
|
255 |
+
|
256 |
+
rho = self.config.rho
|
257 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
258 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
259 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
260 |
+
return sigmas
|
261 |
+
|
262 |
+
def get_scalings(self, sigma):
|
263 |
+
sigma_data = self.config.sigma_data
|
264 |
+
|
265 |
+
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
266 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
267 |
+
return c_skip, c_out
|
268 |
+
|
269 |
+
def get_scalings_for_boundary_condition(self, sigma):
|
270 |
+
"""
|
271 |
+
Gets the scalings used in the consistency model parameterization (from Appendix C of the
|
272 |
+
[paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.
|
273 |
+
<Tip>
|
274 |
+
`epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.
|
275 |
+
</Tip>
|
276 |
+
Args:
|
277 |
+
sigma (`torch.FloatTensor`):
|
278 |
+
The current sigma in the Karras sigma schedule.
|
279 |
+
Returns:
|
280 |
+
`tuple`:
|
281 |
+
A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
|
282 |
+
(which weights the consistency model output) is the second element.
|
283 |
+
"""
|
284 |
+
sigma_min = self.config.sigma_min
|
285 |
+
sigma_data = self.config.sigma_data
|
286 |
+
|
287 |
+
c_skip = sigma_data**2 / ((sigma) ** 2 + sigma_data**2)
|
288 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
289 |
+
return c_skip, c_out
|
290 |
+
|
291 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
292 |
+
def _init_step_index(self, timestep):
|
293 |
+
if isinstance(timestep, torch.Tensor):
|
294 |
+
timestep = timestep.to(self.timesteps.device)
|
295 |
+
|
296 |
+
index_candidates = (self.timesteps == timestep).nonzero()
|
297 |
+
|
298 |
+
# The sigma index that is taken for the **very** first `step`
|
299 |
+
# is always the second index (or the last index if there is only 1)
|
300 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
301 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
302 |
+
if len(index_candidates) > 1:
|
303 |
+
step_index = index_candidates[1]
|
304 |
+
else:
|
305 |
+
step_index = index_candidates[0]
|
306 |
+
|
307 |
+
self._step_index = step_index.item()
|
308 |
+
|
309 |
+
def step(
|
310 |
+
self,
|
311 |
+
model_output: torch.FloatTensor,
|
312 |
+
timestep: Union[float, torch.FloatTensor],
|
313 |
+
sample: torch.FloatTensor,
|
314 |
+
generator: Optional[torch.Generator] = None,
|
315 |
+
return_dict: bool = True,
|
316 |
+
) -> Union[TDDSVDStochasticIterativeSchedulerOutput, Tuple]:
|
317 |
+
"""
|
318 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
319 |
+
process from the learned model outputs (most often the predicted noise).
|
320 |
+
Args:
|
321 |
+
model_output (`torch.FloatTensor`):
|
322 |
+
The direct output from the learned diffusion model.
|
323 |
+
timestep (`float`):
|
324 |
+
The current timestep in the diffusion chain.
|
325 |
+
sample (`torch.FloatTensor`):
|
326 |
+
A current instance of a sample created by the diffusion process.
|
327 |
+
generator (`torch.Generator`, *optional*):
|
328 |
+
A random number generator.
|
329 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
330 |
+
Whether or not to return a
|
331 |
+
[`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] or `tuple`.
|
332 |
+
Returns:
|
333 |
+
[`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] or `tuple`:
|
334 |
+
If return_dict is `True`,
|
335 |
+
[`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] is returned,
|
336 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
337 |
+
"""
|
338 |
+
|
339 |
+
if (
|
340 |
+
isinstance(timestep, int)
|
341 |
+
or isinstance(timestep, torch.IntTensor)
|
342 |
+
or isinstance(timestep, torch.LongTensor)
|
343 |
+
):
|
344 |
+
raise ValueError(
|
345 |
+
(
|
346 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
347 |
+
f" `{self.__class__}.step()` is not supported. Make sure to pass"
|
348 |
+
" one of the `scheduler.timesteps` as a timestep."
|
349 |
+
),
|
350 |
+
)
|
351 |
+
|
352 |
+
if not self.is_scale_input_called:
|
353 |
+
logger.warning(
|
354 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
355 |
+
"See `StableDiffusionPipeline` for a usage example."
|
356 |
+
)
|
357 |
+
|
358 |
+
sigma_min = self.config.sigma_min
|
359 |
+
sigma_max = self.config.sigma_max
|
360 |
+
|
361 |
+
if self.step_index is None:
|
362 |
+
self._init_step_index(timestep)
|
363 |
+
|
364 |
+
# sigma_next corresponds to next_t in original implementation
|
365 |
+
next_step_index = self.step_index + 1
|
366 |
+
|
367 |
+
sigma = self.sigmas[self.step_index]
|
368 |
+
if next_step_index < len(self.sigmas):
|
369 |
+
sigma_next = self.sigmas[next_step_index]
|
370 |
+
else:
|
371 |
+
# Set sigma_next to sigma_min
|
372 |
+
sigma_next = self.sigmas[-1]
|
373 |
+
|
374 |
+
# Get scalings for boundary conditions
|
375 |
+
c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)
|
376 |
+
|
377 |
+
if next_step_index < len(self.original_indices):
|
378 |
+
next_step_original_index = self.original_indices[next_step_index]
|
379 |
+
step_s_original_index = int(next_step_original_index + self.eta * (self.config.num_train_timesteps - 1 - next_step_original_index))
|
380 |
+
sigma_s = self.original_sigmas[step_s_original_index]
|
381 |
+
else:
|
382 |
+
sigma_s = self.sigmas[-1]
|
383 |
+
|
384 |
+
# 1. Denoise model output using boundary conditions
|
385 |
+
denoised = c_out * model_output + c_skip * sample
|
386 |
+
if self.config.clip_denoised:
|
387 |
+
denoised = denoised.clamp(-1, 1)
|
388 |
+
|
389 |
+
d = (sample - denoised) / sigma
|
390 |
+
sample_s = sample + d * (sigma_s - sigma)
|
391 |
+
|
392 |
+
# 2. Sample z ~ N(0, s_noise^2 * I)
|
393 |
+
# Noise is not used for onestep sampling.
|
394 |
+
if len(self.timesteps) > 1:
|
395 |
+
noise = randn_tensor(
|
396 |
+
model_output.shape,
|
397 |
+
dtype=model_output.dtype,
|
398 |
+
device=model_output.device,
|
399 |
+
generator=generator,
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
noise = torch.zeros_like(model_output)
|
403 |
+
z = noise * self.config.s_noise
|
404 |
+
|
405 |
+
sigma_hat = sigma_next.clamp(min = 0, max = sigma_max)
|
406 |
+
# sigma_hat = sigma_next.clamp(min = sigma_min, max = sigma_max)
|
407 |
+
|
408 |
+
# print("denoise currently")
|
409 |
+
# print(sigma_hat)
|
410 |
+
|
411 |
+
# origin
|
412 |
+
# prev_sample = denoised + z * sigma_hat
|
413 |
+
prev_sample = sample_s + z * (sigma_hat - sigma_s)
|
414 |
+
|
415 |
+
# upon completion increase step index by one
|
416 |
+
self._step_index += 1
|
417 |
+
|
418 |
+
if not return_dict:
|
419 |
+
return (prev_sample,)
|
420 |
+
|
421 |
+
return TDDSVDStochasticIterativeSchedulerOutput(prev_sample=prev_sample)
|
422 |
+
|
423 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
424 |
+
def add_noise(
|
425 |
+
self,
|
426 |
+
original_samples: torch.FloatTensor,
|
427 |
+
noise: torch.FloatTensor,
|
428 |
+
timesteps: torch.FloatTensor,
|
429 |
+
) -> torch.FloatTensor:
|
430 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
431 |
+
sigmas = self.sigmas.to(
|
432 |
+
device=original_samples.device, dtype=original_samples.dtype
|
433 |
+
)
|
434 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
435 |
+
# mps does not support float64
|
436 |
+
schedule_timesteps = self.timesteps.to(
|
437 |
+
original_samples.device, dtype=torch.float32
|
438 |
+
)
|
439 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
440 |
+
else:
|
441 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
442 |
+
timesteps = timesteps.to(original_samples.device)
|
443 |
+
|
444 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
445 |
+
|
446 |
+
sigma = sigmas[step_indices].flatten()
|
447 |
+
while len(sigma.shape) < len(original_samples.shape):
|
448 |
+
sigma = sigma.unsqueeze(-1)
|
449 |
+
|
450 |
+
noisy_samples = original_samples + noise * sigma
|
451 |
+
return noisy_samples
|
452 |
+
|
453 |
+
def __len__(self):
|
454 |
+
return self.config.num_train_timesteps
|
455 |
+
|
456 |
+
def set_eta(self, eta: float):
|
457 |
+
assert 0.0 <= eta <= 1.0
|
458 |
+
self.eta = eta
|