import imageio import numpy as np from PIL import Image from diffusers import AutoPipelineForInpainting import torch device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device for I2I: {device}") # Load the inpainting pipeline pipe = AutoPipelineForInpainting.from_pretrained( "diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to(device) def resize_image(image, height, width): """Resize image tensor to the desired height and width.""" return torch.nn.functional.interpolate(image, size=(height, width), mode='nearest') def dummy(img): """Save the composite image and generate a mask from the alpha channel.""" imageio.imwrite("output_image.png", img["composite"]) # Extract alpha channel from the first layer to create the mask alpha_channel = img["layers"][0][:, :, 3] mask = np.where(alpha_channel == 0, 0, 255).astype(np.uint8) return img["background"], mask def I2I(prompt, image, width=1024, height=1024, guidance_scale=8.0, num_inference_steps=20, strength=0.99): img_url, mask = dummy(image) # Resize image and mask to the target dimensions (height x width) img_url = Image.fromarray(img_url, mode="RGB").resize((width, height)) mask_url = Image.fromarray(mask,mode="L").resize((width, height)) # Make sure both image and mask are converted into correct tensors generator = torch.Generator(device=device).manual_seed(0) # Generate the inpainted image output = pipe( prompt=prompt, image=img_url, mask_image=mask_url, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, # steps between 15 and 30 work well for us strength=strength, # make sure to use `strength` below 1.0 generator=generator, ) return output.images[0]