Spaces:
Sleeping
Sleeping
OmarEllethy
commited on
Commit
•
fa27cf0
1
Parent(s):
565c7cb
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
@@ -5,7 +24,7 @@ from PIL import Image
|
|
5 |
import io
|
6 |
|
7 |
# Load the pre-trained TensorFlow model
|
8 |
-
model = tf.keras.models.load_model("
|
9 |
|
10 |
# Define the function to predict the teeth health
|
11 |
def predict_teeth_health(image):
|
@@ -24,18 +43,19 @@ def predict_teeth_health(image):
|
|
24 |
# Get the probability of being 'Good'
|
25 |
probability_good = prediction[0][0] # Assuming it's a binary classification
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
# Define the Gradio interface
|
34 |
iface = gr.Interface(
|
35 |
fn=predict_teeth_health,
|
36 |
inputs=gr.Image(type="pil"),
|
37 |
-
outputs="
|
38 |
-
title="<h1 style='color: lightgreen; text-align: center;'>Dentella</h1>",
|
39 |
)
|
40 |
|
41 |
# Deploy the Gradio interface using Gradio's hosting service
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
# Define the list of libraries to install
|
4 |
+
libraries = [
|
5 |
+
'gradio',
|
6 |
+
'tensorflow',
|
7 |
+
'numpy',
|
8 |
+
'Pillow',
|
9 |
+
'opencv-python-headless',
|
10 |
+
'Flask' # Add Flask here
|
11 |
+
]
|
12 |
+
|
13 |
+
# Install each library using pip
|
14 |
+
for library in libraries:
|
15 |
+
try:
|
16 |
+
subprocess.check_call(['pip', 'install', library])
|
17 |
+
except subprocess.CalledProcessError as e:
|
18 |
+
print(f"Error installing {library}: {e}")
|
19 |
+
|
20 |
import gradio as gr
|
21 |
import tensorflow as tf
|
22 |
import numpy as np
|
|
|
24 |
import io
|
25 |
|
26 |
# Load the pre-trained TensorFlow model
|
27 |
+
model = tf.keras.models.load_model("imageclassifier.h5")
|
28 |
|
29 |
# Define the function to predict the teeth health
|
30 |
def predict_teeth_health(image):
|
|
|
43 |
# Get the probability of being 'Good'
|
44 |
probability_good = prediction[0][0] # Assuming it's a binary classification
|
45 |
|
46 |
+
# Define the prediction result
|
47 |
+
result = {
|
48 |
+
"prediction": "Your Teeth are Good & You Don't Need To Visit Doctor" if probability_good > 0.5 else "Your Teeth are Bad & You Need To Visit Doctor"
|
49 |
+
}
|
50 |
+
|
51 |
+
return result
|
52 |
|
53 |
# Define the Gradio interface
|
54 |
iface = gr.Interface(
|
55 |
fn=predict_teeth_health,
|
56 |
inputs=gr.Image(type="pil"),
|
57 |
+
outputs="json",
|
58 |
+
title="<h1 style='color: lightgreen; text-align: center;'>Dentella</h1><p style='text-align: center; color: skyblue; font-size: 30px;'>Please Enter Your Teeth Here...</p>",
|
59 |
)
|
60 |
|
61 |
# Deploy the Gradio interface using Gradio's hosting service
|