File size: 5,402 Bytes
c1ddcde aa37927 c1ddcde aa37927 c1ddcde aa37927 ce8d243 aa37927 c1ddcde dd5dfbd c1ddcde aa37927 c391bf5 f8ae415 c1ddcde c391bf5 c1ddcde f8ae415 c1ddcde f8ae415 c1ddcde f8ae415 c1ddcde f8ae415 c1ddcde f8ae415 c1ddcde f8ae415 c1ddcde ce8d243 c1ddcde f8ae415 dd5dfbd f8ae415 a3a9c86 1193d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# src/display/utils.py
from dataclasses import dataclass
from enum import Enum
from typing import Any, List
from src.about import Tasks
@dataclass
class ColumnContent:
name: str
type: Any
label: str
description: str
hidden: bool = False
displayed_by_default: bool = True
never_hidden: bool = False
# Initialize the list of columns for the leaderboard
COLUMNS: List[ColumnContent] = []
# Essential columns
COLUMNS.append(
ColumnContent(
name="model_name", # Changed from "model" to "model_name"
type=str,
label="Model",
description="Model name",
never_hidden=True,
)
)
COLUMNS.append(
ColumnContent(
name="average",
type=float,
label="Average Accuracy (%)",
description="Average accuracy across all subjects",
)
)
# Include per-subject accuracy columns based on your subjects
for task in Tasks:
COLUMNS.append(
ColumnContent(
name=task.value.benchmark,
type=float,
label=f"{task.value.col_name} (%)",
description=f"Accuracy on {task.value.col_name}",
displayed_by_default=True,
)
)
# Additional columns
COLUMNS.extend([
ColumnContent(
name="model_type",
type=str,
label="Model Type",
description="Type of the model (e.g., Transformer, RNN, etc.)",
displayed_by_default=True,
),
ColumnContent(
name="weight_type",
type=str,
label="Weight Type",
description="Type of model weights (e.g., Original, Delta, Adapter)",
displayed_by_default=True,
),
ColumnContent(
name="precision",
type=str,
label="Precision",
description="Precision of the model weights (e.g., float16)",
displayed_by_default=True,
),
ColumnContent(
name="license",
type=str,
label="License",
description="License of the model",
displayed_by_default=True,
),
ColumnContent(
name="likes",
type=int,
label="Likes",
description="Number of likes on the Hugging Face Hub",
displayed_by_default=True,
),
ColumnContent(
name="still_on_hub",
type=bool,
label="Available on the Hub",
description="Whether the model is still available on the Hugging Face Hub",
displayed_by_default=True,
),
])
# Create lists of column names for use in the application
COLS = [col.name for col in COLUMNS]
BENCHMARK_COLS = [col.name for col in COLUMNS if col.name not in [
"model_name", "average", "model_type", "weight_type", "precision", "license", "likes", "still_on_hub"
]]
# For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:
name: str
type: Any
label: str
description: str
# Define the queue columns
EVAL_QUEUE_COLUMNS: List[EvalQueueColumn] = [
EvalQueueColumn(
name="model",
type=str,
label="Model",
description="Model name",
),
EvalQueueColumn(
name="revision",
type=str,
label="Revision",
description="Model revision or commit hash",
),
EvalQueueColumn(
name="private",
type=bool,
label="Private",
description="Is the model private?",
),
EvalQueueColumn(
name="precision",
type=str,
label="Precision",
description="Precision of the model weights",
),
EvalQueueColumn(
name="weight_type",
type=str,
label="Weight Type",
description="Type of model weights",
),
EvalQueueColumn(
name="status",
type=str,
label="Status",
description="Evaluation status",
),
]
# Create lists for evaluation columns and types
EVAL_COLS = [col.name for col in EVAL_QUEUE_COLUMNS]
EVAL_TYPES = [col.type for col in EVAL_QUEUE_COLUMNS]
# Model information
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="â•")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type_str):
if "fine-tuned" in type_str or "🔶" in type_str:
return ModelType.FT
if "pretrained" in type_str or "🟢" in type_str:
return ModelType.PT
if "RL-tuned" in type_str or "🟦" in type_str:
return ModelType.RL
if "instruction-tuned" in type_str or "â•" in type_str:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = "Adapter"
Original = "Original"
Delta = "Delta"
class Precision(Enum):
float16 = "float16"
bfloat16 = "bfloat16"
Unknown = "Unknown"
@staticmethod
def from_str(precision_str):
if precision_str in ["torch.float16", "float16"]:
return Precision.float16
if precision_str in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
return Precision.Unknown |