File size: 9,106 Bytes
aa37927
 
 
 
96f572b
 
 
 
 
 
 
aa37927
96f572b
aa37927
 
 
 
 
 
 
 
 
 
96f572b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa37927
 
 
 
 
 
 
96f572b
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f572b
 
 
 
 
 
 
aa37927
96f572b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa37927
96f572b
 
 
 
 
 
aa37927
96f572b
 
 
aa37927
96f572b
aa37927
 
96f572b
 
aa37927
96f572b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import json
import os
from datetime import datetime, timezone

import torch
import pandas as pd
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain.prompts import PromptTemplate

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, EVAL_RESULTS_PATH, RESULTS_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def get_top_prediction(text, tokenizer, model):
    inputs = tokenizer(text, return_tensors='pt')
    if torch.cuda.is_available():
        model = model.cuda()
        inputs = {k: v.cuda() for k, v in inputs.items()}

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits[0, -1]

    options = [' A', ' B', ' C', ' D']
    option_logits = []
    for option in options:
        option_id = tokenizer(option).input_ids[-1]
        option_logit = logits[option_id]
        option_logits.append((option_logit.item(), option.strip()))

    # Get the option with the highest logit
    top_option = max(option_logits, key=lambda x: x[0])[1]
    return top_option

def evaluate_model_accuracy(model_name, num_examples):
    try:
        # Load the model and tokenizer
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        tokenizer.pad_token = tokenizer.eos_token

        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            trust_remote_code=True
        )
        if torch.cuda.is_available():
            model = model.cuda()  # Move model to GPU if available

        # Load your dataset
        dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
        dataset = dataset['test']

        # Convert the dataset to a pandas DataFrame for easier manipulation
        df_dataset = dataset.to_pandas()

        # Get list of unique subjects
        subjects = df_dataset['Subject'].unique()

        # Define prompt template
        template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].

Question: {Question}
A) {A}
B) {B}
C) {C}
D) {D}

Answer:"""

        prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])

        # Initialize counters and results
        overall_correct_predictions = 0
        overall_total_questions = 0
        per_subject_results = []
        detailed_results = []

        for subject in subjects:
            # Filter dataset for the current subject
            subject_df = df_dataset[df_dataset['Subject'] == subject]

            # Select up to num_examples questions
            subject_df = subject_df.sample(n=min(num_examples, len(subject_df)), random_state=42)

            # Initialize counters for this subject
            correct_predictions = 0
            total_questions = 0

            for idx, data in subject_df.iterrows():
                # Prepare text input
                text = prompt_template.format(
                    Question=data['Question'],
                    A=data['A'],
                    B=data['B'],
                    C=data['C'],
                    D=data['D']
                )

                # Get the top prediction
                top_prediction = get_top_prediction(text, tokenizer, model)
                is_correct = (top_prediction == data['Answer'])
                correct_predictions += int(is_correct)
                total_questions += 1
                overall_correct_predictions += int(is_correct)
                overall_total_questions +=1

                detailed_results.append({
                    'Subject': subject,
                    'Question': data['Question'],
                    'Answer': data['Answer'],
                    'Prediction': top_prediction,
                    'Correct': is_correct
                })

            # Compute accuracy for this subject
            subject_accuracy = correct_predictions / total_questions if total_questions > 0 else 0

            per_subject_results.append({
                'Subject': subject,
                'Total Score': correct_predictions,
                'Total Questions': total_questions,
                'Accuracy (%)': subject_accuracy * 100
            })

        # Compute overall accuracy
        overall_accuracy = overall_correct_predictions / overall_total_questions if overall_total_questions > 0 else 0

        # Convert per_subject_results to DataFrame
        df_per_subject = pd.DataFrame(per_subject_results)

        # Convert detailed_results to DataFrame
        df_detailed_results = pd.DataFrame(detailed_results)

        return overall_accuracy, df_per_subject, df_detailed_results

    except Exception as e:
        return f"Error: {str(e)}", pd.DataFrame(), pd.DataFrame()

def add_new_eval(
    model: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
    num_examples: int  # New parameter
):
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return styled_error("Please select a model type.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"

    # Is the model on the hub?
    if weight_type in ["Delta", "Adapter"]:
        base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
        if not base_model_on_hub:
            return styled_error(f'Base model "{base_model}" {error}')

    if not weight_type == "Adapter":
        model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
        if not model_on_hub:
            return styled_error(f'Model "{model}" {error}')

    # Is the model info correctly filled?
    try:
        model_info = API.model_info(repo_id=model, revision=revision)
    except Exception:
        return styled_error("Could not get your model information. Please fill it up properly.")

    model_size = get_model_size(model_info=model_info, precision=precision)

    # Were the model card and license filled?
    try:
        license = model_info.cardData["license"]
    except Exception:
        return styled_error("Please select a license for your model")

    modelcard_OK, error_msg = check_model_card(model)
    if not modelcard_OK:
        return styled_error(error_msg)

    # Check for duplicate submission
    if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
        return styled_warning("This model has been already submitted.")

    # Now, perform the evaluation
    try:
        overall_accuracy, df_per_subject, df_detailed_results = evaluate_model_accuracy(model, int(num_examples))
        if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
            return styled_error(overall_accuracy)
    except Exception as e:
        return styled_error(f"An error occurred during evaluation: {str(e)}")

    # Prepare results for storage
    results_dict = {
        "config": {
            "model_name": model,
            "model_sha": revision,
            "model_dtype": precision,
            "submitted_time": current_time,
            "model_type": model_type,
            "weight_type": weight_type,
            "license": license,
            "likes": model_info.likes,
            "params": model_size,
            "still_on_hub": True,
            "precision": precision,
        },
        "results": {
            "average": overall_accuracy * 100,
        },
    }

    # Include per-subject accuracies
    for idx, row in df_per_subject.iterrows():
        subject_name = row['Subject']
        accuracy = row['Accuracy (%)']
        results_dict['results'][subject_name] = accuracy

    # Save results to a JSON file
    results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
    with open(results_file_path, "w") as f:
        json.dump(results_dict, f)

    # Upload the results file
    API.upload_file(
        path_or_fileobj=results_file_path,
        path_in_repo=results_file_path.split(f"{EVAL_RESULTS_PATH}/")[1],
        repo_id=RESULTS_REPO,
        repo_type="dataset",
        commit_message=f"Add results for {model}"
    )

    # Remove the local results file
    os.remove(results_file_path)

    return styled_message("Your model has been evaluated and the results are now on the leaderboard!")