Omartificial-Intelligence-Space
commited on
Commit
•
4b7beb0
1
Parent(s):
7f8c86c
update sum
Browse files- src/submission/submit.py +75 -92
src/submission/submit.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
from datetime import datetime, timezone
|
4 |
-
|
5 |
import torch
|
6 |
import pandas as pd
|
7 |
import numpy as np
|
@@ -21,54 +21,52 @@ from src.submission.check_validity import (
|
|
21 |
REQUESTED_MODELS = None
|
22 |
USERS_TO_SUBMISSION_DATES = None
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
option_logit = logits[option_id]
|
56 |
-
option_logits.append((option_logit.item(), option))
|
57 |
-
|
58 |
-
|
59 |
-
print("No valid options found.")
|
60 |
-
return None
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
return top_option
|
65 |
-
except Exception as e:
|
66 |
-
tb = traceback.format_exc()
|
67 |
-
print(f"Error in get_top_prediction: {e}\n{tb}")
|
68 |
-
return None
|
69 |
|
|
|
|
|
|
|
70 |
|
71 |
-
def
|
72 |
try:
|
73 |
# Load the model and tokenizer
|
74 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
@@ -83,47 +81,43 @@ def evaluate_model_accuracy(model_name, num_examples):
|
|
83 |
else:
|
84 |
model = model.cpu()
|
85 |
|
86 |
-
# Load your dataset
|
87 |
dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
|
88 |
dataset = dataset['test']
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
# Get list of unique subjects
|
94 |
-
subjects = df_dataset['Subject'].unique()
|
95 |
|
96 |
# Define prompt template
|
97 |
template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].
|
98 |
-
|
99 |
Question: {Question}
|
100 |
A) {A}
|
101 |
B) {B}
|
102 |
C) {C}
|
103 |
D) {D}
|
104 |
-
|
105 |
Answer:"""
|
106 |
|
107 |
prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])
|
108 |
|
109 |
-
# Initialize
|
|
|
|
|
|
|
110 |
overall_correct_predictions = 0
|
111 |
overall_total_questions = 0
|
112 |
-
per_subject_results = []
|
113 |
-
detailed_results = []
|
114 |
|
115 |
for subject in subjects:
|
116 |
-
|
117 |
-
subject_df = df_dataset[df_dataset['Subject'] == subject]
|
118 |
|
119 |
-
#
|
120 |
-
|
|
|
121 |
|
122 |
-
# Initialize counters for this subject
|
123 |
correct_predictions = 0
|
124 |
total_questions = 0
|
|
|
125 |
|
126 |
-
for
|
127 |
# Prepare text input
|
128 |
text = prompt_template.format(
|
129 |
Question=data['Question'],
|
@@ -135,48 +129,38 @@ Answer:"""
|
|
135 |
|
136 |
# Get the top prediction
|
137 |
top_prediction = get_top_prediction(text, tokenizer, model)
|
138 |
-
if top_prediction is None:
|
139 |
-
print(f"Skipping question due to tokenization issues: {data['Question']}")
|
140 |
-
continue # Skip this question if no valid options are found
|
141 |
-
|
142 |
is_correct = (top_prediction == data['Answer'])
|
143 |
correct_predictions += int(is_correct)
|
144 |
total_questions += 1
|
145 |
overall_correct_predictions += int(is_correct)
|
146 |
overall_total_questions += 1
|
147 |
|
148 |
-
|
149 |
-
'Subject': subject,
|
150 |
'Question': data['Question'],
|
151 |
'Answer': data['Answer'],
|
152 |
'Prediction': top_prediction,
|
153 |
'Correct': is_correct
|
154 |
})
|
155 |
|
156 |
-
|
157 |
-
subject_accuracy = correct_predictions / total_questions if total_questions > 0 else 0
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
'
|
162 |
'Total Questions': total_questions,
|
163 |
-
'Accuracy
|
164 |
-
|
165 |
-
|
166 |
-
# Compute overall accuracy
|
167 |
-
overall_accuracy = overall_correct_predictions / overall_total_questions if overall_total_questions > 0 else 0
|
168 |
-
|
169 |
-
# Convert per_subject_results to DataFrame
|
170 |
-
df_per_subject = pd.DataFrame(per_subject_results)
|
171 |
|
172 |
-
|
173 |
-
df_detailed_results = pd.DataFrame(detailed_results)
|
174 |
|
175 |
-
return overall_accuracy,
|
176 |
|
177 |
except Exception as e:
|
178 |
-
|
179 |
-
|
|
|
|
|
180 |
|
181 |
def add_new_eval(
|
182 |
model: str,
|
@@ -185,7 +169,7 @@ def add_new_eval(
|
|
185 |
precision: str,
|
186 |
weight_type: str,
|
187 |
model_type: str,
|
188 |
-
num_examples: int
|
189 |
):
|
190 |
global REQUESTED_MODELS
|
191 |
global USERS_TO_SUBMISSION_DATES
|
@@ -243,7 +227,7 @@ def add_new_eval(
|
|
243 |
|
244 |
# Now, perform the evaluation
|
245 |
try:
|
246 |
-
overall_accuracy,
|
247 |
if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
|
248 |
return styled_error(overall_accuracy)
|
249 |
except Exception as e:
|
@@ -265,15 +249,14 @@ def add_new_eval(
|
|
265 |
"precision": precision,
|
266 |
},
|
267 |
"results": {
|
268 |
-
"average": overall_accuracy
|
269 |
},
|
270 |
}
|
271 |
|
272 |
# Include per-subject accuracies
|
273 |
-
for
|
274 |
-
|
275 |
-
|
276 |
-
results_dict['results'][subject_name] = accuracy
|
277 |
|
278 |
# Save results to a JSON file
|
279 |
results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
|
|
|
1 |
import json
|
2 |
import os
|
3 |
from datetime import datetime, timezone
|
4 |
+
|
5 |
import torch
|
6 |
import pandas as pd
|
7 |
import numpy as np
|
|
|
21 |
REQUESTED_MODELS = None
|
22 |
USERS_TO_SUBMISSION_DATES = None
|
23 |
|
24 |
+
# List of subjects to exclude from evaluation
|
25 |
+
excluded_subjects = [
|
26 |
+
"human_sexuality",
|
27 |
+
"professional_psychology",
|
28 |
+
"moral_disputes",
|
29 |
+
"public_relations",
|
30 |
+
"jurisprudence",
|
31 |
+
"human_aging",
|
32 |
+
"world_religions"
|
33 |
+
]
|
34 |
|
35 |
+
def get_top_prediction(text, tokenizer, model):
|
36 |
+
inputs = tokenizer(text, return_tensors='pt')
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
model = model.cuda()
|
39 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
40 |
+
else:
|
41 |
+
model = model.cpu()
|
42 |
+
inputs = {k: v.cpu() for k, v in inputs.items()}
|
43 |
+
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = model(**inputs)
|
46 |
+
logits = outputs.logits[0, -1] # Get logits of the last token
|
47 |
+
|
48 |
+
options = [' A', ' B', ' C', ' D']
|
49 |
+
option_logits = []
|
50 |
+
|
51 |
+
# Iterate through each option
|
52 |
+
for option in options:
|
53 |
+
option_ids = tokenizer(option).input_ids
|
54 |
+
# Ensure option_ids are within range and not empty
|
55 |
+
if option_ids and option_ids[-1] < logits.size(0):
|
56 |
+
option_id = option_ids[-1]
|
57 |
option_logit = logits[option_id]
|
58 |
+
option_logits.append((option_logit.item(), option.strip()))
|
59 |
+
else:
|
60 |
+
print(f"Skipping option '{option}' due to index out of range.")
|
|
|
|
|
61 |
|
62 |
+
if not option_logits:
|
63 |
+
return "No valid options"
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# Get the option with the highest logit
|
66 |
+
top_option = max(option_logits, key=lambda x: x[0])[1]
|
67 |
+
return top_option
|
68 |
|
69 |
+
def evaluate_model_accuracy_by_subject(model_name, num_examples):
|
70 |
try:
|
71 |
# Load the model and tokenizer
|
72 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
81 |
else:
|
82 |
model = model.cpu()
|
83 |
|
84 |
+
# Load your custom MMMLU dataset
|
85 |
dataset = load_dataset("Omartificial-Intelligence-Space/Arabic_Openai_MMMLU")
|
86 |
dataset = dataset['test']
|
87 |
|
88 |
+
# Filter out excluded subjects
|
89 |
+
dataset = dataset.filter(lambda x: x['Subject'] not in excluded_subjects)
|
|
|
|
|
|
|
90 |
|
91 |
# Define prompt template
|
92 |
template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D].
|
|
|
93 |
Question: {Question}
|
94 |
A) {A}
|
95 |
B) {B}
|
96 |
C) {C}
|
97 |
D) {D}
|
|
|
98 |
Answer:"""
|
99 |
|
100 |
prompt_template = PromptTemplate(template=template, input_variables=['Question', 'A', 'B', 'C', 'D'])
|
101 |
|
102 |
+
# Initialize results storage
|
103 |
+
subject_results = {}
|
104 |
+
|
105 |
+
subjects = dataset.unique('Subject')
|
106 |
overall_correct_predictions = 0
|
107 |
overall_total_questions = 0
|
|
|
|
|
108 |
|
109 |
for subject in subjects:
|
110 |
+
subject_data = dataset.filter(lambda x: x['Subject'] == subject)
|
|
|
111 |
|
112 |
+
# Sample num_examples from each subject
|
113 |
+
if num_examples > 0:
|
114 |
+
subject_data = subject_data.shuffle().select(range(min(num_examples, len(subject_data))))
|
115 |
|
|
|
116 |
correct_predictions = 0
|
117 |
total_questions = 0
|
118 |
+
results = []
|
119 |
|
120 |
+
for data in subject_data:
|
121 |
# Prepare text input
|
122 |
text = prompt_template.format(
|
123 |
Question=data['Question'],
|
|
|
129 |
|
130 |
# Get the top prediction
|
131 |
top_prediction = get_top_prediction(text, tokenizer, model)
|
|
|
|
|
|
|
|
|
132 |
is_correct = (top_prediction == data['Answer'])
|
133 |
correct_predictions += int(is_correct)
|
134 |
total_questions += 1
|
135 |
overall_correct_predictions += int(is_correct)
|
136 |
overall_total_questions += 1
|
137 |
|
138 |
+
results.append({
|
|
|
139 |
'Question': data['Question'],
|
140 |
'Answer': data['Answer'],
|
141 |
'Prediction': top_prediction,
|
142 |
'Correct': is_correct
|
143 |
})
|
144 |
|
145 |
+
accuracy = correct_predictions / total_questions if total_questions > 0 else 0
|
|
|
146 |
|
147 |
+
# Store results for this subject
|
148 |
+
subject_results[subject] = {
|
149 |
+
'Correct Predictions': correct_predictions,
|
150 |
'Total Questions': total_questions,
|
151 |
+
'Accuracy': accuracy * 100,
|
152 |
+
'Results DataFrame': pd.DataFrame(results)
|
153 |
+
}
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
overall_accuracy = (overall_correct_predictions / overall_total_questions) * 100 if overall_total_questions > 0 else 0
|
|
|
156 |
|
157 |
+
return overall_accuracy, subject_results
|
158 |
|
159 |
except Exception as e:
|
160 |
+
import traceback
|
161 |
+
tb = traceback.format_exc()
|
162 |
+
print(f"Error in evaluate_model_accuracy_by_subject: {e}\n{tb}")
|
163 |
+
return f"Error: {str(e)}", {}
|
164 |
|
165 |
def add_new_eval(
|
166 |
model: str,
|
|
|
169 |
precision: str,
|
170 |
weight_type: str,
|
171 |
model_type: str,
|
172 |
+
num_examples: int
|
173 |
):
|
174 |
global REQUESTED_MODELS
|
175 |
global USERS_TO_SUBMISSION_DATES
|
|
|
227 |
|
228 |
# Now, perform the evaluation
|
229 |
try:
|
230 |
+
overall_accuracy, subject_results = evaluate_model_accuracy_by_subject(model, int(num_examples))
|
231 |
if isinstance(overall_accuracy, str) and overall_accuracy.startswith("Error"):
|
232 |
return styled_error(overall_accuracy)
|
233 |
except Exception as e:
|
|
|
249 |
"precision": precision,
|
250 |
},
|
251 |
"results": {
|
252 |
+
"average": overall_accuracy,
|
253 |
},
|
254 |
}
|
255 |
|
256 |
# Include per-subject accuracies
|
257 |
+
for subject, data in subject_results.items():
|
258 |
+
accuracy = data['Accuracy']
|
259 |
+
results_dict['results'][subject] = accuracy
|
|
|
260 |
|
261 |
# Save results to a JSON file
|
262 |
results_file_path = f"{EVAL_RESULTS_PATH}/{model.replace('/', '_')}_results.json"
|