Omartificial-Intelligence-Space
commited on
Commit
•
eb8e45b
1
Parent(s):
96f572b
update evals
Browse files- src/leaderboard/read_evals.py +55 -101
src/leaderboard/read_evals.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
import glob
|
2 |
import json
|
3 |
-
import math
|
4 |
import os
|
5 |
from dataclasses import dataclass
|
6 |
|
7 |
-
import dateutil
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
@@ -16,37 +14,36 @@ from src.submission.check_validity import is_model_on_hub
|
|
16 |
class EvalResult:
|
17 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
"""
|
19 |
-
eval_name: str
|
20 |
-
full_model: str
|
21 |
-
org: str
|
22 |
model: str
|
23 |
-
revision: str
|
24 |
results: dict
|
|
|
25 |
precision: Precision = Precision.Unknown
|
26 |
-
model_type: ModelType = ModelType.Unknown
|
27 |
-
weight_type: WeightType = WeightType.Original
|
28 |
-
architecture: str = "Unknown"
|
29 |
license: str = "?"
|
30 |
likes: int = 0
|
31 |
num_params: int = 0
|
32 |
-
date: str = ""
|
33 |
still_on_hub: bool = False
|
34 |
|
35 |
@classmethod
|
36 |
-
def init_from_json_file(
|
37 |
"""Inits the result from the specific model result file"""
|
38 |
with open(json_filepath) as fp:
|
39 |
data = json.load(fp)
|
40 |
|
41 |
-
config = data.get("config")
|
42 |
|
43 |
# Precision
|
44 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
45 |
|
46 |
# Get model and org
|
47 |
-
org_and_model = config.get("model_name",
|
48 |
-
org_and_model = org_and_model.split("/", 1)
|
49 |
-
|
50 |
if len(org_and_model) == 1:
|
51 |
org = None
|
52 |
model = org_and_model[0]
|
@@ -57,59 +54,50 @@ class EvalResult:
|
|
57 |
result_key = f"{org}_{model}_{precision.value.name}"
|
58 |
full_model = "/".join(org_and_model)
|
59 |
|
60 |
-
|
61 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
62 |
-
)
|
63 |
-
architecture = "?"
|
64 |
-
if model_config is not None:
|
65 |
-
architectures = getattr(model_config, "architectures", None)
|
66 |
-
if architectures:
|
67 |
-
architecture = ";".join(architectures)
|
68 |
-
|
69 |
-
# Extract results available in this file (some results are split in several files)
|
70 |
-
results = {}
|
71 |
-
for task in Tasks:
|
72 |
-
task = task.value
|
73 |
-
|
74 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
75 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
76 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
77 |
-
continue
|
78 |
-
|
79 |
-
mean_acc = np.mean(accs) * 100.0
|
80 |
-
results[task.benchmark] = mean_acc
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
eval_name=result_key,
|
84 |
full_model=full_model,
|
85 |
org=org,
|
86 |
model=model,
|
87 |
-
results=
|
88 |
-
|
89 |
-
|
|
|
90 |
still_on_hub=still_on_hub,
|
91 |
-
architecture=architecture
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
|
94 |
-
def update_with_request_file(self, requests_path):
|
95 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
96 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
97 |
-
|
98 |
-
try:
|
99 |
-
with open(request_file, "r") as f:
|
100 |
-
request = json.load(f)
|
101 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
102 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
103 |
-
self.license = request.get("license", "?")
|
104 |
-
self.likes = request.get("likes", 0)
|
105 |
-
self.num_params = request.get("params", 0)
|
106 |
-
self.date = request.get("submitted_time", "")
|
107 |
-
except Exception:
|
108 |
-
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
109 |
-
|
110 |
def to_dict(self):
|
111 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
112 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
113 |
data_dict = {
|
114 |
"eval_name": self.eval_name, # not a column, just a save name,
|
115 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
@@ -119,7 +107,7 @@ class EvalResult:
|
|
119 |
AutoEvalColumn.architecture.name: self.architecture,
|
120 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
121 |
AutoEvalColumn.revision.name: self.revision,
|
122 |
-
AutoEvalColumn.average.name:
|
123 |
AutoEvalColumn.license.name: self.license,
|
124 |
AutoEvalColumn.likes.name: self.likes,
|
125 |
AutoEvalColumn.params.name: self.num_params,
|
@@ -127,68 +115,34 @@ class EvalResult:
|
|
127 |
}
|
128 |
|
129 |
for task in Tasks:
|
130 |
-
|
|
|
131 |
|
132 |
return data_dict
|
133 |
|
134 |
|
135 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
136 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
137 |
-
request_files = os.path.join(
|
138 |
-
requests_path,
|
139 |
-
f"{model_name}_eval_request_*.json",
|
140 |
-
)
|
141 |
-
request_files = glob.glob(request_files)
|
142 |
-
|
143 |
-
# Select correct request file (precision)
|
144 |
-
request_file = ""
|
145 |
-
request_files = sorted(request_files, reverse=True)
|
146 |
-
for tmp_request_file in request_files:
|
147 |
-
with open(tmp_request_file, "r") as f:
|
148 |
-
req_content = json.load(f)
|
149 |
-
if (
|
150 |
-
req_content["status"] in ["FINISHED"]
|
151 |
-
and req_content["precision"] == precision.split(".")[-1]
|
152 |
-
):
|
153 |
-
request_file = tmp_request_file
|
154 |
-
return request_file
|
155 |
-
|
156 |
-
|
157 |
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
158 |
"""From the path of the results folder root, extract all needed info for results"""
|
159 |
model_result_filepaths = []
|
160 |
|
161 |
for root, _, files in os.walk(results_path):
|
162 |
# We should only have json files in model results
|
163 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
164 |
-
continue
|
165 |
-
|
166 |
-
# Sort the files by date
|
167 |
-
try:
|
168 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
169 |
-
except dateutil.parser._parser.ParserError:
|
170 |
-
files = [files[-1]]
|
171 |
-
|
172 |
for file in files:
|
173 |
-
|
|
|
174 |
|
175 |
eval_results = {}
|
176 |
for model_result_filepath in model_result_filepaths:
|
177 |
# Creation of result
|
178 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
179 |
-
|
180 |
-
|
181 |
-
# Store results of same eval together
|
182 |
eval_name = eval_result.eval_name
|
183 |
-
|
184 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
185 |
-
else:
|
186 |
-
eval_results[eval_name] = eval_result
|
187 |
|
188 |
results = []
|
189 |
for v in eval_results.values():
|
190 |
try:
|
191 |
-
v.to_dict()
|
192 |
results.append(v)
|
193 |
except KeyError: # not all eval values present
|
194 |
continue
|
|
|
1 |
import glob
|
2 |
import json
|
|
|
3 |
import os
|
4 |
from dataclasses import dataclass
|
5 |
|
|
|
6 |
import numpy as np
|
7 |
|
8 |
from src.display.formatting import make_clickable_model
|
|
|
14 |
class EvalResult:
|
15 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
16 |
"""
|
17 |
+
eval_name: str # org_model_precision (uid)
|
18 |
+
full_model: str # org/model (path on hub)
|
19 |
+
org: str
|
20 |
model: str
|
21 |
+
revision: str # commit hash, "" if main
|
22 |
results: dict
|
23 |
+
average_accuracy: float
|
24 |
precision: Precision = Precision.Unknown
|
25 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
26 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
27 |
+
architecture: str = "Unknown"
|
28 |
license: str = "?"
|
29 |
likes: int = 0
|
30 |
num_params: int = 0
|
31 |
+
date: str = "" # submission date of request file
|
32 |
still_on_hub: bool = False
|
33 |
|
34 |
@classmethod
|
35 |
+
def init_from_json_file(cls, json_filepath):
|
36 |
"""Inits the result from the specific model result file"""
|
37 |
with open(json_filepath) as fp:
|
38 |
data = json.load(fp)
|
39 |
|
40 |
+
config = data.get("config", {})
|
41 |
|
42 |
# Precision
|
43 |
+
precision = Precision.from_str(config.get("model_dtype", "Unknown"))
|
44 |
|
45 |
# Get model and org
|
46 |
+
org_and_model = config.get("model_name", "").split("/", 1)
|
|
|
|
|
47 |
if len(org_and_model) == 1:
|
48 |
org = None
|
49 |
model = org_and_model[0]
|
|
|
54 |
result_key = f"{org}_{model}_{precision.value.name}"
|
55 |
full_model = "/".join(org_and_model)
|
56 |
|
57 |
+
results_data = data.get("results", {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# Extract per-subject accuracies
|
60 |
+
per_subject_results = {}
|
61 |
+
for task in Tasks:
|
62 |
+
subject = task.value.benchmark
|
63 |
+
accuracy = results_data.get(subject, None)
|
64 |
+
if accuracy is not None:
|
65 |
+
per_subject_results[subject] = accuracy
|
66 |
+
|
67 |
+
average_accuracy = results_data.get('average', None)
|
68 |
+
|
69 |
+
# Set other fields from config
|
70 |
+
model_type = ModelType.from_str(config.get("model_type", ""))
|
71 |
+
weight_type = WeightType[config.get("weight_type", "Original")]
|
72 |
+
license = config.get("license", "?")
|
73 |
+
likes = config.get("likes", 0)
|
74 |
+
num_params = config.get("params", 0)
|
75 |
+
date = config.get("submitted_time", "")
|
76 |
+
still_on_hub = config.get("still_on_hub", True)
|
77 |
+
architecture = config.get("architecture", "Unknown")
|
78 |
+
|
79 |
+
# Create EvalResult instance
|
80 |
+
return cls(
|
81 |
eval_name=result_key,
|
82 |
full_model=full_model,
|
83 |
org=org,
|
84 |
model=model,
|
85 |
+
results=per_subject_results,
|
86 |
+
average_accuracy=average_accuracy,
|
87 |
+
precision=precision,
|
88 |
+
revision=config.get("model_sha", ""),
|
89 |
still_on_hub=still_on_hub,
|
90 |
+
architecture=architecture,
|
91 |
+
model_type=model_type,
|
92 |
+
weight_type=weight_type,
|
93 |
+
license=license,
|
94 |
+
likes=likes,
|
95 |
+
num_params=num_params,
|
96 |
+
date=date,
|
97 |
)
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def to_dict(self):
|
100 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
101 |
data_dict = {
|
102 |
"eval_name": self.eval_name, # not a column, just a save name,
|
103 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
|
|
107 |
AutoEvalColumn.architecture.name: self.architecture,
|
108 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
109 |
AutoEvalColumn.revision.name: self.revision,
|
110 |
+
AutoEvalColumn.average.name: self.average_accuracy,
|
111 |
AutoEvalColumn.license.name: self.license,
|
112 |
AutoEvalColumn.likes.name: self.likes,
|
113 |
AutoEvalColumn.params.name: self.num_params,
|
|
|
115 |
}
|
116 |
|
117 |
for task in Tasks:
|
118 |
+
subject = task.value.benchmark
|
119 |
+
data_dict[task.value.col_name] = self.results.get(subject, None)
|
120 |
|
121 |
return data_dict
|
122 |
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
125 |
"""From the path of the results folder root, extract all needed info for results"""
|
126 |
model_result_filepaths = []
|
127 |
|
128 |
for root, _, files in os.walk(results_path):
|
129 |
# We should only have json files in model results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
for file in files:
|
131 |
+
if file.endswith(".json"):
|
132 |
+
model_result_filepaths.append(os.path.join(root, file))
|
133 |
|
134 |
eval_results = {}
|
135 |
for model_result_filepath in model_result_filepaths:
|
136 |
# Creation of result
|
137 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
138 |
+
# Store results
|
|
|
|
|
139 |
eval_name = eval_result.eval_name
|
140 |
+
eval_results[eval_name] = eval_result
|
|
|
|
|
|
|
141 |
|
142 |
results = []
|
143 |
for v in eval_results.values():
|
144 |
try:
|
145 |
+
v.to_dict() # we test if the dict version is complete
|
146 |
results.append(v)
|
147 |
except KeyError: # not all eval values present
|
148 |
continue
|