# src/display/utils.py from dataclasses import dataclass from enum import Enum from typing import Any, List from src.about import Tasks @dataclass class ColumnContent: name: str type: Any label: str description: str hidden: bool = False displayed_by_default: bool = True never_hidden: bool = False # Initialize the list of columns for the leaderboard COLUMNS: List[ColumnContent] = [] # Essential columns COLUMNS.append( ColumnContent( name="model_name", # Changed from "model" to "model_name" type=str, label="Model", description="Model name", never_hidden=True, ) ) COLUMNS.append( ColumnContent( name="average", type=float, label="Average Accuracy (%)", description="Average accuracy across all subjects", ) ) # Include per-subject accuracy columns based on your subjects for task in Tasks: COLUMNS.append( ColumnContent( name=task.value.benchmark, type=float, label=f"{task.value.col_name} (%)", description=f"Accuracy on {task.value.col_name}", displayed_by_default=True, ) ) # Additional columns COLUMNS.extend([ ColumnContent( name="model_type", type=str, label="Model Type", description="Type of the model (e.g., Transformer, RNN, etc.)", displayed_by_default=True, ), ColumnContent( name="weight_type", type=str, label="Weight Type", description="Type of model weights (e.g., Original, Delta, Adapter)", displayed_by_default=True, ), ColumnContent( name="precision", type=str, label="Precision", description="Precision of the model weights (e.g., float16)", displayed_by_default=True, ), ColumnContent( name="license", type=str, label="License", description="License of the model", displayed_by_default=True, ), ColumnContent( name="likes", type=int, label="Likes", description="Number of likes on the Hugging Face Hub", displayed_by_default=True, ), ColumnContent( name="still_on_hub", type=bool, label="Available on the Hub", description="Whether the model is still available on the Hugging Face Hub", displayed_by_default=True, ), ]) # Create lists of column names for use in the application COLS = [col.name for col in COLUMNS] BENCHMARK_COLS = [col.name for col in COLUMNS if col.name not in [ "model_name", "average", "model_type", "weight_type", "precision", "license", "likes", "still_on_hub" ]] # For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: name: str type: Any label: str description: str # Define the queue columns EVAL_QUEUE_COLUMNS: List[EvalQueueColumn] = [ EvalQueueColumn( name="model", type=str, label="Model", description="Model name", ), EvalQueueColumn( name="revision", type=str, label="Revision", description="Model revision or commit hash", ), EvalQueueColumn( name="private", type=bool, label="Private", description="Is the model private?", ), EvalQueueColumn( name="precision", type=str, label="Precision", description="Precision of the model weights", ), EvalQueueColumn( name="weight_type", type=str, label="Weight Type", description="Type of model weights", ), EvalQueueColumn( name="status", type=str, label="Status", description="Evaluation status", ), ] # Create lists for evaluation columns and types EVAL_COLS = [col.name for col in EVAL_QUEUE_COLUMNS] EVAL_TYPES = [col.type for col in EVAL_QUEUE_COLUMNS] # Model information @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") FT = ModelDetails(name="fine-tuned", symbol="🔶") IFT = ModelDetails(name="instruction-tuned", symbol="⭕") RL = ModelDetails(name="RL-tuned", symbol="🟦") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type_str): if "fine-tuned" in type_str or "🔶" in type_str: return ModelType.FT if "pretrained" in type_str or "🟢" in type_str: return ModelType.PT if "RL-tuned" in type_str or "🟦" in type_str: return ModelType.RL if "instruction-tuned" in type_str or "⭕" in type_str: return ModelType.IFT return ModelType.Unknown class WeightType(Enum): Adapter = "Adapter" Original = "Original" Delta = "Delta" class Precision(Enum): float16 = "float16" bfloat16 = "bfloat16" Unknown = "Unknown" @staticmethod def from_str(precision_str): if precision_str in ["torch.float16", "float16"]: return Precision.float16 if precision_str in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 return Precision.Unknown