import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( COLUMNS, COLS, BENCHMARK_COLS, EVAL_COLS, EVAL_TYPES, ModelType, WeightType, Precision ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.submission.submit import add_new_eval def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialization try: print(EVAL_REQUESTS_PATH) snapshot_download( repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() # Load the leaderboard DataFrame LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape) # Debug print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist()) # Debug # Load the evaluation queue DataFrames finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): if LEADERBOARD_DF.empty: gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.") else: default_selection = [col.name for col in COLUMNS if col.displayed_by_default] print("Default Selection before ensuring 'model_name':", default_selection) # Debug # Ensure "model_name" is included if "model_name" not in default_selection: default_selection.insert(0, "model_name") print("Default Selection after ensuring 'model_name':", default_selection) # Debug leaderboard = Leaderboard( value=LEADERBOARD_DF, datatype=[col.type for col in COLUMNS], select_columns=SelectColumns( default_selection=default_selection, cant_deselect=[col.name for col in COLUMNS if col.never_hidden], label="Select Columns to Display:", ), search_columns=[col.name for col in COLUMNS if col.name in ["model_name", "license"]], # Updated to 'model_name' hide_columns=[col.name for col in COLUMNS if col.hidden], filter_columns=[ ColumnFilter("model_type", type="checkboxgroup", label="Model types"), ColumnFilter("precision", type="checkboxgroup", label="Precision"), ColumnFilter( "still_on_hub", type="boolean", label="Deleted/incomplete", default=True ), ], bool_checkboxgroup_label="Hide models", interactive=False, ) # No need to call leaderboard.render() since it's created within the Gradio context with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): with gr.Column(): with gr.Row(): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") # Since the evaluation queues are empty, display a message with gr.Column(): gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.") with gr.Row(): gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") with gr.Row(): with gr.Column(): model_name_textbox = gr.Textbox(label="Model name") revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") model_type = gr.Dropdown( choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], label="Model type", multiselect=False, value=None, interactive=True, ) with gr.Column(): precision = gr.Dropdown( choices=[i.value for i in Precision if i != Precision.Unknown], label="Precision", multiselect=False, value="float16", interactive=True, ) weight_type = gr.Dropdown( choices=[i.value for i in WeightType], label="Weights type", multiselect=False, value="Original", interactive=True, ) base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") submit_button = gr.Button("Submit Eval") submission_result = gr.Markdown() submit_button.click( add_new_eval, [ model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type, ], submission_result, ) with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()