File size: 13,335 Bytes
00e4075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
###
# - Author: Jaelin Lee, Abhishek Dutta
# - Date: Mar 23, 2024
# - Description: Streamlit UI for mental health support chatbot using sentiment analsys, RL, BM25/ChromaDB, and LLM.
# - Note:
# - Updated to UI to show predicted mental health condition in behind the scence regardless of the ositive/negative sentiment
###
from dotenv import load_dotenv, find_dotenv
import pandas as pd
import streamlit as st
from q_learning_chatbot import QLearningChatbot
from xgb_mental_health import MentalHealthClassifier
from bm25_retreive_question import QuestionRetriever as QuestionRetriever_bm25
from Chromadb_storage_JyotiNigam import QuestionRetriever as QuestionRetriever_chromaDB
from llm_response_generator import LLLResponseGenerator
import os
from llama_guard import moderate_chat, get_category_name
from gtts import gTTS
from io import BytesIO
from streamlit_mic_recorder import speech_to_text
import re
# Streamlit UI
st.title("MindfulMedia Mentor")
# Define states and actions
states = [
"Negative",
"Moderately Negative",
"Neutral",
"Moderately Positive",
"Positive",
]
actions = ["encouragement", "empathy", "spiritual"]
# Initialize Q-learning chatbot and mental health classifier
chatbot = QLearningChatbot(states, actions)
# Initialize MentalHealthClassifier
# data_path = "/Users/jaelinlee/Documents/projects/fomo/input/data.csv"
data_path = os.path.join("data", "processed", "data.csv")
print(data_path)
tokenizer_model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
mental_classifier_model_path = "app/mental_health_model.pkl"
mental_classifier = MentalHealthClassifier(data_path, mental_classifier_model_path)
# Function to display Q-table
def display_q_table(q_values, states, actions):
q_table_dict = {"State": states}
for i, action in enumerate(actions):
q_table_dict[action] = q_values[:, i]
q_table_df = pd.DataFrame(q_table_dict)
return q_table_df
def text_to_speech(text):
# Use gTTS to convert text to speech
tts = gTTS(text=text, lang="en")
# Save the speech as bytes in memory
fp = BytesIO()
tts.write_to_fp(fp)
return fp
def speech_recognition_callback():
# Ensure that speech output is available
if st.session_state.my_stt_output is None:
st.session_state.p01_error_message = "Please record your response again."
return
# Clear any previous error messages
st.session_state.p01_error_message = None
# Store the speech output in the session state
st.session_state.speech_input = st.session_state.my_stt_output
def remove_html_tags(text):
clean_text = re.sub("<.*?>", "", text)
return clean_text
# Initialize memory
if "entered_text" not in st.session_state:
st.session_state.entered_text = []
if "entered_mood" not in st.session_state:
st.session_state.entered_mood = []
if "messages" not in st.session_state:
st.session_state.messages = []
if "user_sentiment" not in st.session_state:
st.session_state.user_sentiment = "Neutral"
if "mood_trend" not in st.session_state:
st.session_state.mood_trend = "Unchanged"
if "predicted_mental_category" not in st.session_state:
st.session_state.predicted_mental_category = ""
if "ai_tone" not in st.session_state:
st.session_state.ai_tone = "Empathy"
if "mood_trend_symbol" not in st.session_state:
st.session_state.mood_trend_symbol = ""
if "show_question" not in st.session_state:
st.session_state.show_question = False
if "asked_questions" not in st.session_state:
st.session_state.asked_questions = []
# Check if 'llama_guard_enabled' is already in session state, otherwise initialize it
if "llama_guard_enabled" not in st.session_state:
st.session_state["llama_guard_enabled"] = True # Default value to True
# Select Question Retriever
selected_retriever_option = st.sidebar.selectbox(
"Choose Question Retriever", ("BM25", "ChromaDB")
)
if selected_retriever_option == "BM25":
retriever = QuestionRetriever_bm25()
if selected_retriever_option == "ChromaDB":
retriever = QuestionRetriever_chromaDB()
for message in st.session_state.messages:
with st.chat_message(message.get("role")):
st.write(message.get("content"))
section_visible = True
# Collect user input
# Add a radio button to choose input mode
input_mode = st.sidebar.radio("Select input mode:", ["Text", "Speech"])
user_message = None
if input_mode == "Speech":
# Use the speech_to_text function to capture speech input
speech_input = speech_to_text(key="my_stt", callback=speech_recognition_callback)
# Check if speech input is available
if "speech_input" in st.session_state and st.session_state.speech_input:
# Display the speech input
# st.text(f"Speech Input: {st.session_state.speech_input}")
# Process the speech input as a query
user_message = st.session_state.speech_input
st.session_state.speech_input = None
else:
user_message = st.chat_input("Type your message here:")
# Modify the checkbox call to include a unique key parameter
llama_guard_enabled = st.sidebar.checkbox(
"Enable LlamaGuard",
value=st.session_state["llama_guard_enabled"],
key="llama_guard_toggle",
)
# Update the session state based on the checkbox interaction
st.session_state["llama_guard_enabled"] = llama_guard_enabled
# Take user input
if user_message:
st.session_state.entered_text.append(user_message)
st.session_state.messages.append({"role": "user", "content": user_message})
with st.chat_message("user"):
st.write(user_message)
is_safe = True
if st.session_state["llama_guard_enabled"]:
# guard_status = moderate_chat(user_prompt)
guard_status, error = moderate_chat(user_message)
if error:
st.error(f"Failed to retrieve data from Llama Guard: {error}")
else:
if "unsafe" in guard_status[0]["generated_text"]:
is_safe = False
# added on March 24th
unsafe_category_name = get_category_name(
guard_status[0]["generated_text"]
)
if is_safe == False:
response = f"I see you are asking something about {unsafe_category_name} Due to eithical and safety reasons, I can't provide the help you need. Please reach out to someone who can, like a family member, friend, or therapist. In urgent situations, contact emergency services or a crisis hotline. Remember, asking for help is brave, and you're not alone."
st.session_state.messages.append({"role": "ai", "content": response})
with st.chat_message("ai"):
st.markdown(response)
speech_fp = text_to_speech(response)
# Play the speech
st.audio(speech_fp, format="audio/mp3")
else:
# Detect mental condition
with st.spinner("Processing..."):
mental_classifier.initialize_tokenizer(tokenizer_model_name)
mental_classifier.preprocess_data()
predicted_mental_category = mental_classifier.predict_category(user_message)
print("Predicted mental health condition:", predicted_mental_category)
# Detect sentiment
user_sentiment = chatbot.detect_sentiment(user_message)
# Retrieve question
if user_sentiment in ["Negative", "Moderately Negative", "Neutral"]:
question = retriever.get_response(
user_message, predicted_mental_category
)
show_question = True
else:
show_question = False
question = ""
# predicted_mental_category = ""
# Update mood history / mood_trend
chatbot.update_mood_history()
mood_trend = chatbot.check_mood_trend()
# Define rewards
if user_sentiment in ["Positive", "Moderately Positive"]:
if mood_trend == "increased":
reward = +1
mood_trend_symbol = " ⬆️"
elif mood_trend == "unchanged":
reward = +0.8
mood_trend_symbol = ""
else: # decreased
reward = -0.2
mood_trend_symbol = " ⬇️"
else:
if mood_trend == "increased":
reward = +1
mood_trend_symbol = " ⬆️"
elif mood_trend == "unchanged":
reward = -0.2
mood_trend_symbol = ""
else: # decreased
reward = -1
mood_trend_symbol = " ⬇️"
print(
f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - 🛑{reward}🛑"
)
# Update Q-values
chatbot.update_q_values(
user_sentiment, chatbot.actions[0], reward, user_sentiment
)
# Get recommended action based on the updated Q-values
ai_tone = chatbot.get_action(user_sentiment)
print(ai_tone)
print(st.session_state.messages)
# LLM Response Generator
load_dotenv(find_dotenv())
llm_model = LLLResponseGenerator()
temperature = 0.1
max_length = 128
# Collect all messages exchanged so far into a single text string
all_messages = "\n".join(
[message.get("content") for message in st.session_state.messages]
)
# Question asked to the user: {question}
template = """INSTRUCTIONS: {context}
Respond to the user with a tone of {ai_tone}.
Response by the user: {user_text}
Response;
"""
context = f"You are a mental health supporting non-medical assistant. Provide some advice and ask a relevant question back to the user. {all_messages}"
llm_response = llm_model.llm_inference(
model_type="huggingface",
question=question,
prompt_template=template,
context=context,
ai_tone=ai_tone,
questionnaire=predicted_mental_category,
user_text=user_message,
temperature=temperature,
max_length=max_length,
)
llm_response = remove_html_tags(llm_response)
if show_question:
llm_reponse_with_quesiton = f"{llm_response}\n\n{question}"
else:
llm_reponse_with_quesiton = llm_response
# Append the user and AI responses to the chat history
st.session_state.messages.append(
{"role": "ai", "content": llm_reponse_with_quesiton}
)
with st.chat_message("ai"):
st.markdown(llm_reponse_with_quesiton)
# Convert the response to speech
speech_fp = text_to_speech(llm_reponse_with_quesiton)
# Play the speech
st.audio(speech_fp, format="audio/mp3")
# st.write(f"{llm_response}")
# if show_question:
# st.write(f"{question}")
# else:
# user doesn't feel negative.
# get question to ecourage even more positive behaviour
# Update data to memory
st.session_state.user_sentiment = user_sentiment
st.session_state.mood_trend = mood_trend
st.session_state.predicted_mental_category = predicted_mental_category
st.session_state.ai_tone = ai_tone
st.session_state.mood_trend_symbol = mood_trend_symbol
st.session_state.show_question = show_question
# Show/hide "Behind the Scene" section
# section_visible = st.sidebar.button('Show/Hide Behind the Scene')
with st.sidebar.expander("Behind the Scene", expanded=section_visible):
st.subheader("What AI is doing:")
# Use the values stored in session state
st.write(
f"- Detected User Tone: {st.session_state.user_sentiment} ({st.session_state.mood_trend.capitalize()}{st.session_state.mood_trend_symbol})"
)
# if st.session_state.show_question:
st.write(
f"- Possible Mental Condition: {st.session_state.predicted_mental_category.capitalize()}"
)
st.write(f"- AI Tone: {st.session_state.ai_tone.capitalize()}")
st.write(f"- Question retrieved from: {selected_retriever_option}")
st.write(
f"- If the user feels negative, moderately negative, or neutral, at the end of the AI response, it adds a mental health condition related question. The question is retrieved from DB. The categories of questions are limited to Depression, Anxiety, ADHD, Social Media Addiction, Social Isolation, and Cyberbullying which are most associated with FOMO related to excessive social media usage."
)
st.write(
f"- Below q-table is continuously updated after each interaction with the user. If the user's mood increases, AI gets a reward. Else, AI gets a punishment."
)
# Display Q-table
st.dataframe(display_q_table(chatbot.q_values, states, actions))
|