|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import pandas as pd |
|
from xgb_mental_health import MentalHealthClassifier |
|
import pickle |
|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
from torch.nn.functional import softmax |
|
import torch |
|
|
|
|
|
|
|
class QLearningChatbot: |
|
def __init__(self, states, actions, learning_rate=0.9, discount_factor=0.1): |
|
self.states = states |
|
self.actions = actions |
|
self.learning_rate = learning_rate |
|
self.discount_factor = discount_factor |
|
self.q_values = np.random.rand(len(states), len(actions)) |
|
self.mood = "Neutral" |
|
self.mood_history = [] |
|
self.mood_history_int = [] |
|
self.tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") |
|
self.bert_sentiment_model_path = "bert_sentiment.pkl" |
|
self.bert_sentiment_model = self.load_model() if os.path.exists(self.bert_sentiment_model_path) else AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") |
|
|
|
|
|
def detect_sentiment(self, input_text): |
|
|
|
encoded_input = self.tokenizer(input_text, return_tensors='pt', truncation=True, max_length=512) |
|
|
|
|
|
with torch.no_grad(): |
|
output = self.bert_sentiment_model(**encoded_input) |
|
|
|
|
|
scores = softmax(output.logits, dim=1) |
|
|
|
|
|
labels = ['Negative', 'Moderately Negative', 'Neutral', 'Moderately Positive', 'Positive'] |
|
scores = scores.numpy().flatten() |
|
scores_dict = {label: score for label, score in zip(labels, scores)} |
|
highest_sentiment = max(scores_dict, key=scores_dict.get) |
|
self.mood = highest_sentiment |
|
return highest_sentiment |
|
|
|
def get_action(self, current_state): |
|
current_state_index = self.states.index(current_state) |
|
|
|
return self.actions[np.argmax(self.q_values[current_state_index, :])] |
|
|
|
def update_q_values(self, current_state, action, reward, next_state): |
|
|
|
current_state_index = self.states.index(current_state) |
|
action_index = self.actions.index(action) |
|
next_state_index = self.states.index(next_state) |
|
|
|
current_q_value = self.q_values[current_state_index, action_index] |
|
max_next_q_value = np.max(self.q_values[next_state_index, :]) |
|
|
|
new_q_value = current_q_value + self.learning_rate * (reward + self.discount_factor * max_next_q_value - current_q_value) |
|
self.q_values[current_state_index, action_index] = new_q_value |
|
|
|
def update_mood_history(self): |
|
st.session_state.entered_mood.append(self.mood) |
|
self.mood_history = st.session_state.entered_mood |
|
return self.mood_history |
|
|
|
def check_mood_trend(self): |
|
mood_dict = {'Negative': 1, 'Moderately Negative': 2, 'Neutral': 3, 'Moderately Positive': 4, 'Positive': 5} |
|
|
|
if len(self.mood_history) >= 2: |
|
self.mood_history_int = [mood_dict.get(x) for x in self.mood_history] |
|
recent_moods = self.mood_history_int[-2:] |
|
if recent_moods[-1] > recent_moods[-2]: |
|
return 'increased' |
|
elif recent_moods[-1] < recent_moods[-2]: |
|
return 'decreased' |
|
else: |
|
return 'unchanged' |
|
else: |
|
return 'unchanged' |
|
|