|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dotenv import load_dotenv, find_dotenv |
|
import pandas as pd |
|
import streamlit as st |
|
from q_learning_chatbot import QLearningChatbot |
|
from xgb_mental_health import MentalHealthClassifier |
|
from bm25_retreive_question import QuestionRetriever as QuestionRetriever_bm25 |
|
from Chromadb_storage_JyotiNigam import QuestionRetriever as QuestionRetriever_chromaDB |
|
from llm_response_generator import LLLResponseGenerator |
|
import os |
|
from llama_guard import moderate_chat |
|
|
|
|
|
st.title("MindfulMedia Mentor") |
|
|
|
|
|
states = [ |
|
"Negative", |
|
"Moderately Negative", |
|
"Neutral", |
|
"Moderately Positive", |
|
"Positive", |
|
] |
|
actions = ["encouragement", "empathy", "spiritual"] |
|
|
|
|
|
chatbot = QLearningChatbot(states, actions) |
|
|
|
|
|
|
|
data_path = os.path.join("data", "data.csv") |
|
print(data_path) |
|
|
|
tokenizer_model_name = "nlptown/bert-base-multilingual-uncased-sentiment" |
|
mental_classifier_model_path = "mental_health_model.pkl" |
|
mental_classifier = MentalHealthClassifier(data_path, mental_classifier_model_path) |
|
|
|
|
|
|
|
def display_q_table(q_values, states, actions): |
|
q_table_dict = {"State": states} |
|
for i, action in enumerate(actions): |
|
q_table_dict[action] = q_values[:, i] |
|
|
|
q_table_df = pd.DataFrame(q_table_dict) |
|
return q_table_df |
|
|
|
|
|
|
|
if "entered_text" not in st.session_state: |
|
st.session_state.entered_text = [] |
|
if "entered_mood" not in st.session_state: |
|
st.session_state.entered_mood = [] |
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
if "user_sentiment" not in st.session_state: |
|
st.session_state.user_sentiment = "Neutral" |
|
if "mood_trend" not in st.session_state: |
|
st.session_state.mood_trend = "Unchanged" |
|
if "predicted_mental_category" not in st.session_state: |
|
st.session_state.predicted_mental_category = "" |
|
if "ai_tone" not in st.session_state: |
|
st.session_state.ai_tone = "Empathy" |
|
if "mood_trend_symbol" not in st.session_state: |
|
st.session_state.mood_trend_symbol = "" |
|
if "show_question" not in st.session_state: |
|
st.session_state.show_question = False |
|
if "asked_questions" not in st.session_state: |
|
st.session_state.asked_questions = [] |
|
|
|
if "llama_guard_enabled" not in st.session_state: |
|
st.session_state["llama_guard_enabled"] = False |
|
|
|
|
|
selected_retriever_option = st.sidebar.selectbox( |
|
"Choose Question Retriever", ("BM25", "ChromaDB") |
|
) |
|
if selected_retriever_option == "BM25": |
|
retriever = QuestionRetriever_bm25() |
|
if selected_retriever_option == "ChromaDB": |
|
retriever = QuestionRetriever_chromaDB() |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message.get("role")): |
|
st.write(message.get("content")) |
|
|
|
section_visible = True |
|
|
|
|
|
|
|
user_message = st.chat_input("Type your message here:") |
|
|
|
|
|
|
|
llama_guard_enabled = st.sidebar.checkbox( |
|
"Enable LlamaGuard", |
|
value=st.session_state["llama_guard_enabled"], |
|
key="llama_guard_toggle", |
|
) |
|
|
|
|
|
|
|
st.session_state["llama_guard_enabled"] = llama_guard_enabled |
|
|
|
|
|
if user_message: |
|
st.session_state.entered_text.append(user_message) |
|
|
|
st.session_state.messages.append({"role": "user", "content": user_message}) |
|
with st.chat_message("user"): |
|
st.write(user_message) |
|
|
|
is_safe = True |
|
if st.session_state["llama_guard_enabled"]: |
|
chat = [ |
|
{"role": "user", "content": user_message}, |
|
{"role": "assistant", "content": ""}, |
|
] |
|
guard_status = moderate_chat(chat) |
|
if "unsafe" in guard_status[0]["generated_text"]: |
|
is_safe = False |
|
print("Guard status", guard_status) |
|
|
|
if is_safe == False: |
|
response = "Due to eithical and safety reasons, I can't provide the help you need. Please reach out to someone who can, like a family member, friend, or therapist. In urgent situations, contact emergency services or a crisis hotline. Remember, asking for help is brave, and you're not alone." |
|
st.session_state.messages.append({"role": "ai", "content": response}) |
|
with st.chat_message("ai"): |
|
st.markdown(response) |
|
else: |
|
|
|
with st.spinner("Processing..."): |
|
mental_classifier.initialize_tokenizer(tokenizer_model_name) |
|
mental_classifier.preprocess_data() |
|
predicted_mental_category = mental_classifier.predict_category(user_message) |
|
print("Predicted mental health condition:", predicted_mental_category) |
|
|
|
|
|
user_sentiment = chatbot.detect_sentiment(user_message) |
|
|
|
|
|
if user_sentiment in ["Negative", "Moderately Negative", "Neutral"]: |
|
question = retriever.get_response( |
|
user_message, predicted_mental_category |
|
) |
|
show_question = True |
|
else: |
|
show_question = False |
|
question = "" |
|
|
|
|
|
|
|
chatbot.update_mood_history() |
|
mood_trend = chatbot.check_mood_trend() |
|
|
|
|
|
if user_sentiment in ["Positive", "Moderately Positive"]: |
|
if mood_trend == "increased": |
|
reward = +1 |
|
mood_trend_symbol = " ⬆️" |
|
elif mood_trend == "unchanged": |
|
reward = +0.8 |
|
mood_trend_symbol = "" |
|
else: |
|
reward = -0.2 |
|
mood_trend_symbol = " ⬇️" |
|
else: |
|
if mood_trend == "increased": |
|
reward = +1 |
|
mood_trend_symbol = " ⬆️" |
|
elif mood_trend == "unchanged": |
|
reward = -0.2 |
|
mood_trend_symbol = "" |
|
else: |
|
reward = -1 |
|
mood_trend_symbol = " ⬇️" |
|
|
|
print( |
|
f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - 🛑{reward}🛑" |
|
) |
|
|
|
|
|
chatbot.update_q_values( |
|
user_sentiment, chatbot.actions[0], reward, user_sentiment |
|
) |
|
|
|
|
|
ai_tone = chatbot.get_action(user_sentiment) |
|
print(ai_tone) |
|
|
|
print(st.session_state.messages) |
|
|
|
|
|
load_dotenv(find_dotenv()) |
|
|
|
llm_model = LLLResponseGenerator() |
|
temperature = 0.5 |
|
max_length = 128 |
|
|
|
|
|
all_messages = "\n".join( |
|
[message.get("content") for message in st.session_state.messages] |
|
) |
|
|
|
|
|
|
|
template = """INSTRUCTIONS: {context} |
|
|
|
Respond to the user with a tone of {ai_tone}. |
|
|
|
Response by the user: {user_text} |
|
Response; |
|
""" |
|
context = f"You are a mental health supporting non-medical assistant. Provide some advice and ask a relevant question back to the user. {all_messages}" |
|
|
|
llm_response = llm_model.llm_inference( |
|
model_type="huggingface", |
|
question=question, |
|
prompt_template=template, |
|
context=context, |
|
ai_tone=ai_tone, |
|
questionnaire=predicted_mental_category, |
|
user_text=user_message, |
|
temperature=temperature, |
|
max_length=max_length, |
|
) |
|
|
|
if show_question: |
|
llm_reponse_with_quesiton = f"{llm_response}\n\n{question}" |
|
else: |
|
llm_reponse_with_quesiton = llm_response |
|
|
|
|
|
st.session_state.messages.append( |
|
{"role": "ai", "content": llm_reponse_with_quesiton} |
|
) |
|
|
|
with st.chat_message("ai"): |
|
st.markdown(llm_reponse_with_quesiton) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.session_state.user_sentiment = user_sentiment |
|
st.session_state.mood_trend = mood_trend |
|
st.session_state.predicted_mental_category = predicted_mental_category |
|
st.session_state.ai_tone = ai_tone |
|
st.session_state.mood_trend_symbol = mood_trend_symbol |
|
st.session_state.show_question = show_question |
|
|
|
|
|
|
|
|
|
with st.sidebar.expander("Behind the Scene", expanded=section_visible): |
|
st.subheader("What AI is doing:") |
|
|
|
st.write( |
|
f"- Detected User Tone: {st.session_state.user_sentiment} ({st.session_state.mood_trend.capitalize()}{st.session_state.mood_trend_symbol})" |
|
) |
|
|
|
st.write( |
|
f"- Possible Mental Condition: {st.session_state.predicted_mental_category.capitalize()}" |
|
) |
|
st.write(f"- AI Tone: {st.session_state.ai_tone.capitalize()}") |
|
st.write(f"- Question retrieved from: {selected_retriever_option}") |
|
st.write( |
|
f"- If the user feels negative, moderately negative, or neutral, at the end of the AI response, it adds a mental health condition related question. The question is retrieved from DB. The categories of questions are limited to Depression, Anxiety, ADHD, Social Media Addiction, Social Isolation, and Cyberbullying which are most associated with FOMO related to excessive social media usage." |
|
) |
|
st.write( |
|
f"- Below q-table is continuously updated after each interaction with the user. If the user's mood increases, AI gets a reward. Else, AI gets a punishment." |
|
) |
|
|
|
|
|
st.dataframe(display_q_table(chatbot.q_values, states, actions)) |
|
|