Spaces:
Sleeping
Sleeping
ASledziewska
commited on
Commit
β’
2cbbd1d
1
Parent(s):
5d8c448
Update app.py
Browse files
app.py
CHANGED
@@ -45,9 +45,22 @@ if "entered_text" not in st.session_state:
|
|
45 |
st.session_state.entered_text = []
|
46 |
if "entered_mood" not in st.session_state:
|
47 |
st.session_state.entered_mood = []
|
48 |
-
|
49 |
if "messages" not in st.session_state:
|
50 |
st.session_state.messages = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Select Question Retriever
|
53 |
selected_retriever_option = st.sidebar.selectbox(
|
@@ -62,6 +75,9 @@ for message in st.session_state.messages:
|
|
62 |
with st.chat_message(message.get("role")):
|
63 |
st.write(message.get("content"))
|
64 |
|
|
|
|
|
|
|
65 |
# Collect user input
|
66 |
user_message = st.chat_input("Type your message here:")
|
67 |
|
@@ -72,8 +88,8 @@ if user_message:
|
|
72 |
st.session_state.messages.append({"role": "user", "content": user_message})
|
73 |
with st.chat_message("user"):
|
74 |
st.write(user_message)
|
75 |
-
# Detect mental condition
|
76 |
|
|
|
77 |
with st.spinner("Processing..."):
|
78 |
mental_classifier.initialize_tokenizer(tokenizer_model_name)
|
79 |
mental_classifier.preprocess_data()
|
@@ -84,7 +100,7 @@ if user_message:
|
|
84 |
user_sentiment = chatbot.detect_sentiment(user_message)
|
85 |
|
86 |
# Retrieve question
|
87 |
-
if user_sentiment in ["Negative", "Moderately Negative"]:
|
88 |
question = retriever.get_response(user_message, predicted_mental_category)
|
89 |
show_question = True
|
90 |
else:
|
@@ -92,7 +108,7 @@ if user_message:
|
|
92 |
question = ""
|
93 |
predicted_mental_category = ""
|
94 |
|
95 |
-
# Update mood history /
|
96 |
chatbot.update_mood_history()
|
97 |
mood_trend = chatbot.check_mood_trend()
|
98 |
|
@@ -104,10 +120,9 @@ if user_message:
|
|
104 |
elif mood_trend == "unchanged":
|
105 |
reward = +0.8
|
106 |
mood_trend_symbol = ""
|
107 |
-
else: #
|
108 |
reward = -0.2
|
109 |
mood_trend_symbol = " β¬οΈ"
|
110 |
-
|
111 |
else:
|
112 |
if mood_trend == "increased":
|
113 |
reward = +1
|
@@ -120,7 +135,7 @@ if user_message:
|
|
120 |
mood_trend_symbol = " β¬οΈ"
|
121 |
|
122 |
print(
|
123 |
-
f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - π{reward}π
|
124 |
)
|
125 |
|
126 |
# Update Q-values
|
@@ -131,7 +146,7 @@ if user_message:
|
|
131 |
# Get recommended action based on the updated Q-values
|
132 |
ai_tone = chatbot.get_action(user_sentiment)
|
133 |
print(ai_tone)
|
134 |
-
|
135 |
# LLM Response Generator
|
136 |
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
137 |
|
@@ -139,11 +154,13 @@ if user_message:
|
|
139 |
temperature = 0.1
|
140 |
max_length = 128
|
141 |
|
|
|
|
|
142 |
template = """INSTRUCTIONS: {context}
|
143 |
|
144 |
Respond to the user with a tone of {ai_tone}.
|
145 |
|
146 |
-
Question asked to the user:
|
147 |
|
148 |
Response by the user: {user_text}
|
149 |
Response;
|
@@ -161,44 +178,53 @@ if user_message:
|
|
161 |
temperature=temperature,
|
162 |
max_length=max_length,
|
163 |
)
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
with st.chat_message("ai"):
|
167 |
-
st.markdown(
|
168 |
# st.write(f"{llm_response}")
|
169 |
-
if show_question:
|
170 |
-
|
171 |
# else:
|
172 |
# user doesn't feel negative.
|
173 |
# get question to ecourage even more positive behaviour
|
174 |
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
st.write(
|
177 |
-
f"- Detected User Tone: {user_sentiment} ({mood_trend.capitalize()}{mood_trend_symbol})"
|
178 |
)
|
179 |
-
if show_question:
|
180 |
st.write(
|
181 |
-
f"- Possible Mental Condition: {predicted_mental_category.capitalize()}"
|
182 |
)
|
183 |
-
st.write(f"- AI Tone: {ai_tone.capitalize()}")
|
184 |
st.write(f"- Question retrieved from: {selected_retriever_option}")
|
185 |
st.write(
|
186 |
-
f"- If the user feels
|
187 |
)
|
188 |
st.write(
|
189 |
-
f"- Below q-table is
|
190 |
)
|
191 |
|
192 |
-
# Display results
|
193 |
-
# st.subheader(f"{user_sentiment.capitalize()}")
|
194 |
-
# st.write("->" + f"{ai_tone.capitalize()}")
|
195 |
-
# st.write(f"Mood {chatbot.check_mood_trend()}")
|
196 |
-
# st.write(f"{ai_tone.capitalize()}, {chatbot.check_mood_trend()}")
|
197 |
-
|
198 |
# Display Q-table
|
199 |
st.dataframe(display_q_table(chatbot.q_values, states, actions))
|
200 |
-
|
201 |
-
# Display mood history
|
202 |
-
# st.subheader("Mood History (Recent 5):")
|
203 |
-
# for mood_now in reversed(chatbot.mood_history[-5:]): #st.session_state.entered_mood[-5:], chatbot.mood_history[-5:]): #st.session_state.entered_text[-5:]
|
204 |
-
# st.write(f"{mood_now}")
|
|
|
45 |
st.session_state.entered_text = []
|
46 |
if "entered_mood" not in st.session_state:
|
47 |
st.session_state.entered_mood = []
|
|
|
48 |
if "messages" not in st.session_state:
|
49 |
st.session_state.messages = []
|
50 |
+
if "user_sentiment" not in st.session_state:
|
51 |
+
st.session_state.user_sentiment = "Neutral"
|
52 |
+
if "mood_trend" not in st.session_state:
|
53 |
+
st.session_state.mood_trend = "Unchanged"
|
54 |
+
if "predicted_mental_category" not in st.session_state:
|
55 |
+
st.session_state.predicted_mental_category = ""
|
56 |
+
if "ai_tone" not in st.session_state:
|
57 |
+
st.session_state.ai_tone = "Empathy"
|
58 |
+
if "mood_trend_symbol" not in st.session_state:
|
59 |
+
st.session_state.mood_trend_symbol = ""
|
60 |
+
if "show_question" not in st.session_state:
|
61 |
+
st.session_state.show_question = False
|
62 |
+
if "asked_questions" not in st.session_state:
|
63 |
+
st.session_state.asked_questions = []
|
64 |
|
65 |
# Select Question Retriever
|
66 |
selected_retriever_option = st.sidebar.selectbox(
|
|
|
75 |
with st.chat_message(message.get("role")):
|
76 |
st.write(message.get("content"))
|
77 |
|
78 |
+
section_visible = False
|
79 |
+
|
80 |
+
|
81 |
# Collect user input
|
82 |
user_message = st.chat_input("Type your message here:")
|
83 |
|
|
|
88 |
st.session_state.messages.append({"role": "user", "content": user_message})
|
89 |
with st.chat_message("user"):
|
90 |
st.write(user_message)
|
|
|
91 |
|
92 |
+
# Detect mental condition
|
93 |
with st.spinner("Processing..."):
|
94 |
mental_classifier.initialize_tokenizer(tokenizer_model_name)
|
95 |
mental_classifier.preprocess_data()
|
|
|
100 |
user_sentiment = chatbot.detect_sentiment(user_message)
|
101 |
|
102 |
# Retrieve question
|
103 |
+
if user_sentiment in ["Negative", "Moderately Negative", "Neutral"]:
|
104 |
question = retriever.get_response(user_message, predicted_mental_category)
|
105 |
show_question = True
|
106 |
else:
|
|
|
108 |
question = ""
|
109 |
predicted_mental_category = ""
|
110 |
|
111 |
+
# Update mood history / mood_trend
|
112 |
chatbot.update_mood_history()
|
113 |
mood_trend = chatbot.check_mood_trend()
|
114 |
|
|
|
120 |
elif mood_trend == "unchanged":
|
121 |
reward = +0.8
|
122 |
mood_trend_symbol = ""
|
123 |
+
else: # decreased
|
124 |
reward = -0.2
|
125 |
mood_trend_symbol = " β¬οΈ"
|
|
|
126 |
else:
|
127 |
if mood_trend == "increased":
|
128 |
reward = +1
|
|
|
135 |
mood_trend_symbol = " β¬οΈ"
|
136 |
|
137 |
print(
|
138 |
+
f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - π{reward}π"
|
139 |
)
|
140 |
|
141 |
# Update Q-values
|
|
|
146 |
# Get recommended action based on the updated Q-values
|
147 |
ai_tone = chatbot.get_action(user_sentiment)
|
148 |
print(ai_tone)
|
149 |
+
|
150 |
# LLM Response Generator
|
151 |
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
152 |
|
|
|
154 |
temperature = 0.1
|
155 |
max_length = 128
|
156 |
|
157 |
+
#Question asked to the user: {question}
|
158 |
+
|
159 |
template = """INSTRUCTIONS: {context}
|
160 |
|
161 |
Respond to the user with a tone of {ai_tone}.
|
162 |
|
163 |
+
Question asked to the user: "None"
|
164 |
|
165 |
Response by the user: {user_text}
|
166 |
Response;
|
|
|
178 |
temperature=temperature,
|
179 |
max_length=max_length,
|
180 |
)
|
181 |
+
|
182 |
+
if show_question:
|
183 |
+
llm_reponse_with_quesiton = f"{llm_response}\n\n{question}"
|
184 |
+
else:
|
185 |
+
llm_reponse_with_quesiton = llm_response
|
186 |
+
|
187 |
+
st.session_state.messages.append({"role": "ai", "content": llm_reponse_with_quesiton})
|
188 |
|
189 |
with st.chat_message("ai"):
|
190 |
+
st.markdown(llm_reponse_with_quesiton)
|
191 |
# st.write(f"{llm_response}")
|
192 |
+
# if show_question:
|
193 |
+
# st.write(f"{question}")
|
194 |
# else:
|
195 |
# user doesn't feel negative.
|
196 |
# get question to ecourage even more positive behaviour
|
197 |
|
198 |
+
|
199 |
+
# Update data to memory
|
200 |
+
st.session_state.user_sentiment = user_sentiment
|
201 |
+
st.session_state.mood_trend = mood_trend
|
202 |
+
st.session_state.predicted_mental_category = predicted_mental_category
|
203 |
+
st.session_state.ai_tone = ai_tone
|
204 |
+
st.session_state.mood_trend_symbol = mood_trend_symbol
|
205 |
+
st.session_state.show_question = show_question
|
206 |
+
|
207 |
+
# Show/hide "Behind the Scene" section
|
208 |
+
# section_visible = st.sidebar.button('Show/Hide Behind the Scene')
|
209 |
+
|
210 |
+
with st.sidebar.expander('Behind the Scene', expanded=section_visible):
|
211 |
+
st.subheader("What AI is doing:")
|
212 |
+
# Use the values stored in session state
|
213 |
st.write(
|
214 |
+
f"- Detected User Tone: {st.session_state.user_sentiment} ({st.session_state.mood_trend.capitalize()}{st.session_state.mood_trend_symbol})"
|
215 |
)
|
216 |
+
if st.session_state.show_question:
|
217 |
st.write(
|
218 |
+
f"- Possible Mental Condition: {st.session_state.predicted_mental_category.capitalize()}"
|
219 |
)
|
220 |
+
st.write(f"- AI Tone: {st.session_state.ai_tone.capitalize()}")
|
221 |
st.write(f"- Question retrieved from: {selected_retriever_option}")
|
222 |
st.write(
|
223 |
+
f"- If the user feels negative or moderately negative, at the end of the AI response, it adds a mental health condition related question. The question is retrieved from DB. The categories of questions are limited to Depression, Anxiety, and ADHD which are most associated with FOMO related to excessive social media usage."
|
224 |
)
|
225 |
st.write(
|
226 |
+
f"- Below q-table is continuously updated after each interaction with the user. If the user's mood increases, AI gets a reward. Else, AI gets a punishment."
|
227 |
)
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
# Display Q-table
|
230 |
st.dataframe(display_q_table(chatbot.q_values, states, actions))
|
|
|
|
|
|
|
|
|
|