Spaces:
Runtime error
Runtime error
File size: 29,024 Bytes
61f3f56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from .multimodal_encoder.builder import build_image_tower, build_video_tower
from .multimodal_projector.builder import build_vision_projector
from llava.constants import IGNORE_INDEX, X_TOKEN_INDEX, DEFAULT_X_PATCH_TOKEN, DEFAULT_X_START_TOKEN, DEFAULT_X_END_TOKEN
class LlavaMetaModel:
def __init__(self, config):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_image_tower"):
self.image_tower = build_image_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
if hasattr(config, "mm_video_tower"):
self.video_tower = build_video_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
def get_image_tower(self):
image_tower = getattr(self, 'image_tower', None)
if type(image_tower) is list:
image_tower = image_tower[0]
return image_tower
def get_video_tower(self):
video_tower = getattr(self, 'video_tower', None)
if type(video_tower) is list:
video_tower = video_tower[0]
return video_tower
def initialize_image_modules(self, model_args, fsdp=None):
image_tower = model_args.image_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_image_tower = image_tower
image_tower = build_image_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.image_tower = [image_tower]
else:
self.image_tower = image_tower
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = image_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.mm_projector = build_vision_projector(self.config)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
def initialize_video_modules(self, model_args, fsdp=None):
video_tower = model_args.video_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_video_tower = video_tower
video_tower = build_video_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.video_tower = [video_tower]
else:
self.video_tower = video_tower
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = video_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.mm_projector = build_vision_projector(self.config)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_image_tower(self):
return self.get_model().get_image_tower()
def get_video_tower(self):
return self.get_model().get_video_tower()
def get_all_tower(self, keys):
tower = {key: getattr(self, f'get_{key}_tower') for key in keys}
return tower
def encode_images(self, images):
image_features = self.get_model().get_image_tower()(images)
image_features = self.get_model().mm_projector(image_features)
return image_features
def encode_videos(self, videos):
video_features = self.get_model().get_video_tower()(videos)
video_features = self.get_model().mm_projector(video_features)
return video_features
#
# def prepare_inputs_labels_for_multimodal(
# self, input_ids, attention_mask, past_key_values, labels, images
# ):
# vision_tower = self.get_vision_tower()
# if vision_tower is None or images is None or input_ids.shape[1] == 1:
# if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
# attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
# return input_ids, attention_mask, past_key_values, None, labels
#
# if type(images) is list or images.ndim == 5:
# concat_images = torch.cat([image for image in images], dim=0)
# image_features = self.encode_images(concat_images)
# split_sizes = [image.shape[0] for image in images]
# image_features = torch.split(image_features, split_sizes, dim=0)
# image_features = [x.flatten(0, 1) for x in image_features]
# else:
# image_features = self.encode_images(images)
#
# new_input_embeds = []
# new_labels = [] if labels is not None else None
# cur_image_idx = 0
# for batch_idx, cur_input_ids in enumerate(input_ids):
# if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
# # multimodal LLM, but the current sample is not multimodal
# # FIXME: this is a hacky fix, for deepspeed zero3 to work
# half_len = cur_input_ids.shape[0] // 2
# cur_image_features = image_features[cur_image_idx]
# cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
# cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
# cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
# new_input_embeds.append(cur_input_embeds)
# if labels is not None:
# new_labels.append(labels[batch_idx])
# cur_image_idx += 1
# continue
# image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] # 把中间的imgtoken的位置找到
# cur_new_input_embeds = []
# if labels is not None:
# cur_labels = labels[batch_idx]
# cur_new_labels = []
# assert cur_labels.shape == cur_input_ids.shape
# while image_token_indices.numel() > 0:
# cur_image_features = image_features[cur_image_idx]
# image_token_start = image_token_indices[0]
# if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
# cur_new_input_embeds.append(cur_image_features)
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
# if labels is not None:
# cur_new_labels.append(cur_labels[:image_token_start])
# cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
# cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
# cur_labels = cur_labels[image_token_start+2:]
# else:
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) # imgtoken之前的text拿出来,好像都是模板套话
# cur_new_input_embeds.append(cur_image_features)
# if labels is not None:
# cur_new_labels.append(cur_labels[:image_token_start])
# cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
# cur_labels = cur_labels[image_token_start+1:]
# cur_image_idx += 1
# if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
# cur_input_ids = cur_input_ids[image_token_start+2:]
# else:
# cur_input_ids = cur_input_ids[image_token_start+1:] # imgtoken之后的text拿出来,是真的question
# image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
# if cur_input_ids.numel() > 0:
# if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
# else:
# cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
# if labels is not None:
# cur_new_labels.append(cur_labels)
# cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] # 前面text+图片+后面question
# cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
# new_input_embeds.append(cur_new_input_embeds)
# if labels is not None:
# cur_new_labels = torch.cat(cur_new_labels, dim=0)
# new_labels.append(cur_new_labels)
#
# if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
# max_len = max(x.shape[0] for x in new_input_embeds)
#
# new_input_embeds_align = []
# for cur_new_embed in new_input_embeds:
# cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
# new_input_embeds_align.append(cur_new_embed)
# new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
#
# if labels is not None:
# new_labels_align = []
# _new_labels = new_labels
# for cur_new_label in new_labels:
# cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
# new_labels_align.append(cur_new_label)
# new_labels = torch.stack(new_labels_align, dim=0)
#
# if attention_mask is not None:
# new_attention_mask = []
# for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
# new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
# new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
# cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
# new_attention_mask.append(cur_new_attention_mask)
# attention_mask = torch.stack(new_attention_mask, dim=0)
# assert attention_mask.shape == new_labels.shape
# else:
# new_input_embeds = torch.stack(new_input_embeds, dim=0)
# if labels is not None:
# new_labels = torch.stack(new_labels, dim=0)
#
# if attention_mask is not None:
# new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
# attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
# assert attention_mask.shape == new_input_embeds.shape[:2]
#
# return None, attention_mask, past_key_values, new_input_embeds, new_labels
#
# def initialize_vision_tokenizer(self, model_args, tokenizer):
# if model_args.mm_use_im_patch_token:
# tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
# self.resize_token_embeddings(len(tokenizer))
#
# if model_args.mm_use_im_start_end:
# num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
# self.resize_token_embeddings(len(tokenizer))
#
# if num_new_tokens > 0:
# input_embeddings = self.get_input_embeddings().weight.data
# output_embeddings = self.get_output_embeddings().weight.data
#
# input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
# dim=0, keepdim=True)
# output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
# dim=0, keepdim=True)
#
# input_embeddings[-num_new_tokens:] = input_embeddings_avg
# output_embeddings[-num_new_tokens:] = output_embeddings_avg
#
# if model_args.tune_mm_mlp_adapter:
# for p in self.get_input_embeddings().parameters():
# p.requires_grad = True
# for p in self.get_output_embeddings().parameters():
# p.requires_grad = False
#
# if model_args.pretrain_mm_mlp_adapter:
# mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
# embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
# assert num_new_tokens == 2
# if input_embeddings.shape == embed_tokens_weight.shape:
# input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
# elif embed_tokens_weight.shape[0] == num_new_tokens:
# input_embeddings[-num_new_tokens:] = embed_tokens_weight
# else:
# raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
# elif model_args.mm_use_im_patch_token:
# if model_args.tune_mm_mlp_adapter:
# for p in self.get_input_embeddings().parameters():
# p.requires_grad = False
# for p in self.get_output_embeddings().parameters():
# p.requires_grad = False
def prepare_inputs_labels_for_multimodal(
self, input_ids, attention_mask, past_key_values, labels, X_modalities
):
'''
X_modalities [
[img_feature, img_feature, video_feature, audio_feature],
['image', 'image', 'video', 'audio']
]
'''
Xs, keys = X_modalities
all_tower = self.get_all_tower(set(keys)) if len(keys) > 0 else None
# print(2.5)
if all_tower is None or X_modalities[0][0] is None or input_ids.shape[1] == 1:
if past_key_values is not None and all_tower is not None and Xs is not None and input_ids.shape[1] == 1:
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
return input_ids, attention_mask, past_key_values, None, labels
# if type(images) is list or images.ndim == 5:
# concat_images = torch.cat([image for image in images], dim=0)
# image_features = self.encode_images(concat_images)
# split_sizes = [image.shape[0] for image in images]
# image_features = torch.split(image_features, split_sizes, dim=0)
# image_features = [x.flatten(0, 1) for x in image_features]
# else:
print(keys)
X_features = [getattr(self, f'encode_{key}s')(X.unsqueeze(0)) for X, key in zip(Xs, keys)] # expand to get batchsize
# X_features = []
# # print(2.5, *[i.shape for i in Xs], keys)
# for X, key in zip(Xs, keys):
# temp_X = X.unsqueeze(0)
# # print(2.6)
# # fn = getattr(self, f'encode_{key}s')
# if key == 'image':
# out = self.encode_images(temp_X)
# # print(2.65, 'image', out.shape)
# elif key == 'video':
# out = self.encode_videos(temp_X)
# # print(2.65, 'video', out.shape)
# else:
# raise NameError(f'{key}')
# # print(2.8, out.shape)
# X_features.append(out)
X_features = [x.flatten(0, 1) for x in X_features]
# print([[j, i.shape] for i, j in zip(X_features, keys)])
new_input_embeds = []
new_labels = [] if labels is not None else None
cur_X_idx = 0
# print(2.9, input_ids.shape)
for batch_idx, cur_input_ids in enumerate(input_ids):
# print(333333)
if (torch.any(torch.stack([cur_input_ids == X_TOKEN_INDEX[key.upper()] for key in keys]), dim=0)).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
# FIXME: this is a hacky fix, for deepspeed zero3 to work
half_len = cur_input_ids.shape[0] // 2
cur_X_features = X_features[cur_X_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_X_features[0:0], cur_input_embeds_2], dim=0)
new_input_embeds.append(cur_input_embeds)
if labels is not None:
new_labels.append(labels[batch_idx])
cur_X_idx += 1 ############## 注意这里跳过了,如果一个sample是一个modal,那么就跳过1个全zero的modal,如果一个sample对应多个modal,这里的训练逻辑不对!!!
###### 但似乎不影响1个sample的inference
###### 一个text对应视频和图片,直接走下边了。只有1个text,传入none或者1个/2个全zero都无所谓,反正没有下一个数据了。
continue
X_token_indices = torch.where(torch.any(torch.stack([cur_input_ids == X_TOKEN_INDEX[key.upper()] for key in keys]), dim=0))[0] # 把中间的imgtoken的位置找到
cur_new_input_embeds = []
if labels is not None:
cur_labels = labels[batch_idx]
cur_new_labels = []
assert cur_labels.shape == cur_input_ids.shape
# print(4444444444)
while X_token_indices.numel() > 0:
cur_X_features = X_features[cur_X_idx]
X_token_start = X_token_indices[0]
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_x_start_end', False):
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:X_token_start-1]).detach())
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[X_token_start-1:X_token_start]))
cur_new_input_embeds.append(cur_X_features)
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[X_token_start+1:X_token_start+2]))
if labels is not None:
cur_new_labels.append(cur_labels[:X_token_start])
cur_new_labels.append(torch.full((cur_X_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_new_labels.append(cur_labels[X_token_start:X_token_start+1])
cur_labels = cur_labels[X_token_start+2:]
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:X_token_start])) # imgtoken之前的text拿出来,好像都是模板套话
cur_new_input_embeds.append(cur_X_features)
if labels is not None:
cur_new_labels.append(cur_labels[:X_token_start])
cur_new_labels.append(torch.full((cur_X_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_labels = cur_labels[X_token_start+1:]
cur_X_idx += 1
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_x_start_end', False):
cur_input_ids = cur_input_ids[X_token_start+2:]
else:
cur_input_ids = cur_input_ids[X_token_start+1:] # imgtoken之后的text拿出来,是真的question
X_token_indices = torch.where(torch.any(torch.stack([cur_input_ids == X_TOKEN_INDEX[key.upper()] for key in keys]), dim=0))[0]
# print(55555555555555555)
if cur_input_ids.numel() > 0:
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_x_start_end', False):
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
if labels is not None:
cur_new_labels.append(cur_labels)
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] # 前面text+图片+后面question
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
new_input_embeds.append(cur_new_input_embeds)
if labels is not None:
cur_new_labels = torch.cat(cur_new_labels, dim=0)
new_labels.append(cur_new_labels)
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
max_len = max(x.shape[0] for x in new_input_embeds)
new_input_embeds_align = []
for cur_new_embed in new_input_embeds:
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
new_input_embeds_align.append(cur_new_embed)
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
if labels is not None:
new_labels_align = []
_new_labels = new_labels
for cur_new_label in new_labels:
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
new_labels_align.append(cur_new_label)
new_labels = torch.stack(new_labels_align, dim=0)
if attention_mask is not None:
new_attention_mask = []
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
new_attention_mask.append(cur_new_attention_mask)
attention_mask = torch.stack(new_attention_mask, dim=0)
assert attention_mask.shape == new_labels.shape
else:
new_input_embeds = torch.stack(new_input_embeds, dim=0)
if labels is not None:
new_labels = torch.stack(new_labels, dim=0)
if attention_mask is not None:
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
assert attention_mask.shape == new_input_embeds.shape[:2]
return None, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_X_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_x_patch_token:
for x in model_args.X:
tokenizer.add_tokens([DEFAULT_X_PATCH_TOKEN[x.upper()]], special_tokens=True)
# tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_x_start_end:
num_new_tokens = 0
for x in model_args.X:
num_new_tokens += tokenizer.add_tokens([DEFAULT_X_START_TOKEN[x.upper()], DEFAULT_X_END_TOKEN[x.upper()]], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_x_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False |