LinB203
m
61f3f56
raw
history blame
3.06 kB
import torch
from PIL import Image
from torchvision import transforms
from transformers import ProcessorMixin, BatchEncoding
from transformers.image_processing_utils import BatchFeature
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
def make_list_of_images(x):
if not isinstance(x, list):
return [x]
return x
def get_thermal_transform(config):
config = config.vision_config
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.Normalize(OPENAI_DATASET_MEAN, OPENAI_DATASET_STD) # assume image
]
)
return transform
def load_and_transform_thermal(thermal_path, transform):
thermal = Image.open(thermal_path)
thermal_outputs = transform(thermal)
return thermal_outputs
class LanguageBindThermalProcessor(ProcessorMixin):
attributes = []
tokenizer_class = ("LanguageBindThermalTokenizer")
def __init__(self, config, tokenizer=None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.transform = get_thermal_transform(config)
self.image_processor = load_and_transform_thermal
self.tokenizer = tokenizer
def __call__(self, images=None, text=None, context_length=77, return_tensors=None, **kwargs):
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(text, max_length=context_length, padding='max_length',
truncation=True, return_tensors=return_tensors, **kwargs)
if images is not None:
images = make_list_of_images(images)
image_features = [self.image_processor(image, self.transform) for image in images]
image_features = torch.stack(image_features)
if text is not None and images is not None:
encoding["pixel_values"] = image_features
return encoding
elif text is not None:
return encoding
else:
return {"pixel_values": image_features}
def batch_decode(self, skip_special_tokens=True, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
def decode(self, skip_special_tokens=True, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)