Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,27 +8,41 @@ import urllib.request
|
|
8 |
import uuid
|
9 |
uid=uuid.uuid4()
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
def
|
14 |
-
outputs =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
results = {}
|
16 |
for result in outputs:
|
17 |
results[result['label']] = result['score']
|
18 |
return results
|
19 |
-
|
20 |
|
21 |
def softmax(vector):
|
22 |
e = exp(vector)
|
23 |
return e / e.sum()
|
24 |
|
25 |
|
26 |
-
models=[
|
27 |
-
"Nahrawy/AIorNot",
|
28 |
-
"umm-maybe/AI-image-detector",
|
29 |
-
"arnolfokam/ai-generated-image-detector",
|
30 |
|
31 |
-
]
|
32 |
fin_sum=[]
|
33 |
def aiornot0(image):
|
34 |
labels = ["Real", "AI"]
|
@@ -172,11 +186,25 @@ with gr.Blocks() as app:
|
|
172 |
with gr.Box():
|
173 |
n_out2=gr.Label(label="Output")
|
174 |
outp2 = gr.HTML("""""")
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
btn.click(fin_clear,None,fin)
|
177 |
load_btn.click(load_url,in_url,[inp,mes])
|
178 |
btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin)
|
179 |
btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin)
|
180 |
btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin)
|
181 |
|
|
|
|
|
|
|
|
|
182 |
app.queue(concurrency_count=20).launch()
|
|
|
8 |
import uuid
|
9 |
uid=uuid.uuid4()
|
10 |
|
11 |
+
models=[
|
12 |
+
"Nahrawy/AIorNot",
|
13 |
+
"umm-maybe/AI-image-detector",
|
14 |
+
"arnolfokam/ai-generated-image-detector",
|
15 |
+
]
|
16 |
+
|
17 |
+
pipe0 = pipeline("image-classification", f"{models[0]}")
|
18 |
+
pipe1 = pipeline("image-classification", f"{models[1]}")
|
19 |
+
pipe2 = pipeline("image-classification", f"{models[2]}")
|
20 |
|
21 |
+
def image_classifier0(image):
|
22 |
+
outputs = pipe0(image)
|
23 |
+
results = {}
|
24 |
+
for result in outputs:
|
25 |
+
results[result['label']] = result['score']
|
26 |
+
return results
|
27 |
+
def image_classifier1(image):
|
28 |
+
outputs = pipe1(image)
|
29 |
+
results = {}
|
30 |
+
for result in outputs:
|
31 |
+
results[result['label']] = result['score']
|
32 |
+
return results
|
33 |
+
def image_classifier2(image):
|
34 |
+
outputs = pipe2(image)
|
35 |
results = {}
|
36 |
for result in outputs:
|
37 |
results[result['label']] = result['score']
|
38 |
return results
|
|
|
39 |
|
40 |
def softmax(vector):
|
41 |
e = exp(vector)
|
42 |
return e / e.sum()
|
43 |
|
44 |
|
|
|
|
|
|
|
|
|
45 |
|
|
|
46 |
fin_sum=[]
|
47 |
def aiornot0(image):
|
48 |
labels = ["Real", "AI"]
|
|
|
186 |
with gr.Box():
|
187 |
n_out2=gr.Label(label="Output")
|
188 |
outp2 = gr.HTML("""""")
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Box():
|
191 |
+
n_out3=gr.Label(label="Output")
|
192 |
+
outp3 = gr.HTML("""""")
|
193 |
+
with gr.Box():
|
194 |
+
n_out4=gr.Label(label="Output")
|
195 |
+
outp4 = gr.HTML("""""")
|
196 |
+
with gr.Box():
|
197 |
+
n_out5=gr.Label(label="Output")
|
198 |
+
outp5 = gr.HTML("""""")
|
199 |
+
|
200 |
btn.click(fin_clear,None,fin)
|
201 |
load_btn.click(load_url,in_url,[inp,mes])
|
202 |
btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin)
|
203 |
btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin)
|
204 |
btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin)
|
205 |
|
206 |
+
btn.click(image_classifier0,[inp],[n_out3])
|
207 |
+
btn.click(image_classifier1,[inp],[n_out4])
|
208 |
+
btn.click(image_classifier2,[inp],[n_out5])
|
209 |
+
|
210 |
app.queue(concurrency_count=20).launch()
|