Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -23,25 +23,19 @@ def aiornot0(image):
|
|
23 |
input = feature_extractor0(image, return_tensors="pt")
|
24 |
with torch.no_grad():
|
25 |
outputs = model0(**input)
|
26 |
-
print (outputs)
|
27 |
logits = outputs.logits
|
28 |
-
print (logits)
|
29 |
probability = softmax(logits)
|
30 |
-
print(f'PROBABILITY ::: {probability}')
|
31 |
-
print(probability[0][0])
|
32 |
px = pd.DataFrame(probability.numpy())
|
33 |
-
print(px)
|
34 |
-
|
35 |
prediction = logits.argmax(-1).item()
|
36 |
label = labels[prediction]
|
37 |
-
|
38 |
html_out = f"""
|
39 |
-
<h3>
|
40 |
-
This image is likely: {label}
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
45 |
return gr.HTML.update(html_out)
|
46 |
def aiornot1(image):
|
47 |
labels = ["Real", "AI"]
|
@@ -51,12 +45,20 @@ def aiornot1(image):
|
|
51 |
input = feature_extractor1(image, return_tensors="pt")
|
52 |
with torch.no_grad():
|
53 |
outputs = model1(**input)
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
prediction = logits.argmax(-1).item()
|
58 |
-
label = labels[prediction]
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def aiornot2(image):
|
61 |
labels = ["Real", "AI"]
|
62 |
mod=models[2]
|
@@ -65,12 +67,20 @@ def aiornot2(image):
|
|
65 |
input = feature_extractor2(image, return_tensors="pt")
|
66 |
with torch.no_grad():
|
67 |
outputs = model2(**input)
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
prediction = logits.argmax(-1).item()
|
72 |
-
label = labels[prediction]
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
with gr.Blocks() as app:
|
75 |
with gr.Row():
|
76 |
with gr.Column():
|
@@ -80,10 +90,12 @@ with gr.Blocks() as app:
|
|
80 |
|
81 |
with gr.Column():
|
82 |
#outp0 = gr.Textbox(label=f'{models[0]}')
|
83 |
-
lab0 = gr.HTML(f"""Testing on Model {models[0]}""")
|
84 |
outp0 = gr.HTML("""""")
|
85 |
-
|
86 |
-
|
|
|
|
|
87 |
btn.click(aiornot0,[inp],outp0)
|
88 |
btn.click(aiornot1,[inp],outp1)
|
89 |
btn.click(aiornot2,[inp],outp2)
|
|
|
23 |
input = feature_extractor0(image, return_tensors="pt")
|
24 |
with torch.no_grad():
|
25 |
outputs = model0(**input)
|
|
|
26 |
logits = outputs.logits
|
|
|
27 |
probability = softmax(logits)
|
|
|
|
|
28 |
px = pd.DataFrame(probability.numpy())
|
|
|
|
|
29 |
prediction = logits.argmax(-1).item()
|
30 |
label = labels[prediction]
|
|
|
31 |
html_out = f"""
|
32 |
+
<h3>
|
33 |
+
<b>This image is likely: {label}</b><br>
|
34 |
+
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
|
35 |
+
<br>
|
36 |
+
Probabilites:<br>
|
37 |
+
Real: {px[0][0]}<br>
|
38 |
+
AI: {px[1][0]}"""
|
39 |
return gr.HTML.update(html_out)
|
40 |
def aiornot1(image):
|
41 |
labels = ["Real", "AI"]
|
|
|
45 |
input = feature_extractor1(image, return_tensors="pt")
|
46 |
with torch.no_grad():
|
47 |
outputs = model1(**input)
|
48 |
+
logits = outputs.logits
|
49 |
+
probability = softmax(logits)
|
50 |
+
px = pd.DataFrame(probability.numpy())
|
51 |
prediction = logits.argmax(-1).item()
|
52 |
+
label = labels[prediction]
|
53 |
+
html_out = f"""
|
54 |
+
<h3>
|
55 |
+
<b>This image is likely: {label}</b><br>
|
56 |
+
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
|
57 |
+
<br>
|
58 |
+
Probabilites:<br>
|
59 |
+
Real: {px[0][0]}<br>
|
60 |
+
AI: {px[1][0]}"""
|
61 |
+
return gr.HTML.update(html_out)
|
62 |
def aiornot2(image):
|
63 |
labels = ["Real", "AI"]
|
64 |
mod=models[2]
|
|
|
67 |
input = feature_extractor2(image, return_tensors="pt")
|
68 |
with torch.no_grad():
|
69 |
outputs = model2(**input)
|
70 |
+
logits = outputs.logits
|
71 |
+
probability = softmax(logits)
|
72 |
+
px = pd.DataFrame(probability.numpy())
|
73 |
prediction = logits.argmax(-1).item()
|
74 |
+
label = labels[prediction]
|
75 |
+
html_out = f"""
|
76 |
+
<h3>
|
77 |
+
<b>This image is likely: {label}</b><br>
|
78 |
+
Model used: <a href='https://huggingface.co/{mod}'>{mod}</a><br>
|
79 |
+
<br>
|
80 |
+
Probabilites:<br>
|
81 |
+
Real: {px[0][0]}<br>
|
82 |
+
AI: {px[1][0]}"""
|
83 |
+
return gr.HTML.update(html_out)
|
84 |
with gr.Blocks() as app:
|
85 |
with gr.Row():
|
86 |
with gr.Column():
|
|
|
90 |
|
91 |
with gr.Column():
|
92 |
#outp0 = gr.Textbox(label=f'{models[0]}')
|
93 |
+
lab0 = gr.HTML(f"""Testing on Model: {models[0]}""")
|
94 |
outp0 = gr.HTML("""""")
|
95 |
+
lab1 = gr.HTML(f"""Testing on Model: {models[1]}""")
|
96 |
+
outp1 = gr.HTML("""""")
|
97 |
+
lab2 = gr.HTML(f"""Testing on Model: {models[2]}""")
|
98 |
+
outp2 = gr.HTML("""""")
|
99 |
btn.click(aiornot0,[inp],outp0)
|
100 |
btn.click(aiornot1,[inp],outp1)
|
101 |
btn.click(aiornot2,[inp],outp2)
|