import gradio as gr import torch from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline from numpy import exp import pandas as pd from PIL import Image import urllib.request import uuid uid=uuid.uuid4() def softmax(vector): e = exp(vector) return e / e.sum() models=[ "Nahrawy/AIorNot", "umm-maybe/AI-image-detector", "arnolfokam/ai-generated-image-detector", ] def aiornot0(image): labels = ["Real", "AI"] mod=models[0] feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod) model0 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor0(image, return_tensors="pt") with torch.no_grad(): outputs = model0(**input) logits = outputs.logits probability = softmax(logits) px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Probabilites:
Real: {px[0][0]}
AI: {px[1][0]}""" results = {} for idx,result in enumerate(px): results[labels[idx]] = px[idx][0] #results[labels['label']] = result['score'] return gr.HTML.update(html_out),results def aiornot1(image): labels = ["Real", "AI"] mod=models[1] feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod) model1 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor1(image, return_tensors="pt") with torch.no_grad(): outputs = model1(**input) logits = outputs.logits probability = softmax(logits) px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Probabilites:
Real: {px[0][0]}
AI: {px[1][0]}""" results = {} for idx,result in enumerate(px): results[labels[idx]] = px[idx][0] #results[labels['label']] = result['score'] return gr.HTML.update(html_out),results def aiornot2(image): labels = ["AI", "Real"] mod=models[2] feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod) model2 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor2(image, return_tensors="pt") with torch.no_grad(): outputs = model2(**input) logits = outputs.logits probability = softmax(logits) px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Probabilites:
Real: {px[1][0]}
AI: {px[0][0]}""" results = {} for idx,result in enumerate(px): results[labels[idx]] = px[idx][0] #results[labels['label']] = result['score'] return gr.HTML.update(html_out),results def load_url(url): try: urllib.request.urlretrieve( f'{url}', f"{uid}tmp_im.png") image = Image.open(f"{uid}tmp_im.png") mes = "Image Loaded" except Exception as e: image=None mes=f"Image not Found
Error: {e}" return image,mes with gr.Blocks() as app: with gr.Row(): with gr.Column(): in_url=gr.Textbox(label="Image URL") with gr.Row(): load_btn=gr.Button("Load URL") btn = gr.Button("Detect AI") mes = gr.HTML("""""") inp = gr.Pil() with gr.Group(): with gr.Row(): with gr.Box(): lab0 = gr.HTML(f"""Testing on Model: {models[0]}""") outp0 = gr.HTML("""""") n_out0=gr.Label(label="Output") with gr.Box(): lab1 = gr.HTML(f"""Testing on Model: {models[1]}""") outp1 = gr.HTML("""""") n_out1=gr.Label(label="Output") with gr.Box(): lab2 = gr.HTML(f"""Testing on Model: {models[2]}""") outp2 = gr.HTML("""""") n_out2=gr.Label(label="Output") load_btn.click(load_url,in_url,[inp,mes]) btn.click(aiornot0,[inp],[outp0,n_out0]) btn.click(aiornot1,[inp],[outp1,n_out1]) btn.click(aiornot2,[inp],[outp2,n_out2]) app.launch(enable_queue=False)