import gradio as gr import torch from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline from numpy import exp import pandas as pd def softmax(vector): e = exp(vector) return e / e.sum() models=[ "Nahrawy/AIorNot", "arnolfokam/ai-generated-image-detector", "umm-maybe/AI-image-detector", ] def aiornot0(image): labels = ["Real", "AI"] mod=models[0] feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod) model0 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor0(image, return_tensors="pt") with torch.no_grad(): outputs = model0(**input) logits = outputs.logits probability = softmax(logits) px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Model used: {mod}

Probabilites:
Real: {px[0][0]}
AI: {px[1][0]}""" return gr.HTML.update(html_out) def aiornot1(image): labels = ["Real", "AI"] mod=models[1] feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod) model1 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor1(image, return_tensors="pt") with torch.no_grad(): outputs = model1(**input) logits = outputs.logits probability = softmax(logits) px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Model used: {mod}

Probabilites:
Real: {px[0][0]}
AI: {px[1][0]}""" return gr.HTML.update(html_out) def aiornot2(image): labels = ["Real", "AI"] mod=models[2] feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod) model2 = AutoModelForImageClassification.from_pretrained(mod) input = feature_extractor2(image, return_tensors="pt") with torch.no_grad(): outputs = model2(**input) logits = outputs.logits probability = softmax(logits) px = pd.DataFrame(probability.numpy()) prediction = logits.argmax(-1).item() label = labels[prediction] html_out = f"""

This image is likely: {label}


Model used: {mod}

Probabilites:
Real: {px[0][0]}
AI: {px[1][0]}""" return gr.HTML.update(html_out) with gr.Blocks() as app: with gr.Column(): inp = gr.Image() btn = gr.Button() with gr.Group(): with gr.Row(): with gr.Box(): lab0 = gr.HTML(f"""Testing on Model: {models[0]}""") outp0 = gr.HTML("""""") with gr.Box(): lab1 = gr.HTML(f"""Testing on Model: {models[1]}""") outp1 = gr.HTML("""""") with gr.Box(): lab2 = gr.HTML(f"""Testing on Model: {models[2]}""") outp2 = gr.HTML("""""") btn.click(aiornot0,[inp],outp0) btn.click(aiornot1,[inp],outp1) btn.click(aiornot2,[inp],outp2) app.launch()