import gradio as gr import urllib.request import requests import bs4 import lxml import os #import subprocess from huggingface_hub import InferenceClient,HfApi import random import json import datetime import uuid from prompts import ( FINDER, SAVE_MEMORY, COMPRESS_HISTORY_PROMPT, COMPRESS_DATA_PROMPT, COMPRESS_DATA_PROMPT_SMALL, LOG_PROMPT, LOG_RESPONSE, PREFIX, TASK_PROMPT, ) reponame="Omnibus/tmp" save_data=f'https://huggingface.co/datasets/{reponame}/raw/main/' token_self = os.environ['HF_TOKEN'] api=HfApi(token=token_self) client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1" ) from gradio_client import Client client2 = Client("https://omnibus-html-image-current-tab.hf.space/--replicas/strm7/") def get_screenshot(chat,height=5000,width=600,chatblock=[1],header=True,theme="light",wait=3000): result = client2.predict(chat,height,width,chatblock,header,theme,wait,api_name="/run_script") print (result[0]) def parse_action(string: str): print("PARSING:") print(string) assert string.startswith("action:") idx = string.find("action_input=") print(idx) if idx == -1: print ("idx == -1") print (string[8:]) return string[8:], None print ("last return:") print (string[8 : idx - 1]) print (string[idx + 13 :].strip("'").strip('"')) return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"') VERBOSE = True MAX_HISTORY = 100 MAX_DATA = 20000 def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def run_gpt( prompt_template, stop_tokens, max_tokens, seed, purpose, **prompt_kwargs, ): timestamp=datetime.datetime.now() print(seed) generate_kwargs = dict( temperature=0.9, max_new_tokens=max_tokens, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=seed, ) content = PREFIX.format( timestamp=timestamp, purpose=purpose, ) + prompt_template.format(**prompt_kwargs) if VERBOSE: print(LOG_PROMPT.format(content)) #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) #formatted_prompt = format_prompt(f'{content}', **prompt_kwargs['history']) stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) resp = "" for response in stream: resp += response.token.text #yield resp if VERBOSE: print(LOG_RESPONSE.format(resp)) return resp def compress_data(c,purpose, task, history, result): seed=random.randint(1,1000000000) print (c) #tot=len(purpose) #print(tot) divr=int(c)/MAX_DATA divi=int(divr)+1 if divr != int(divr) else int(divr) chunk = int(int(c)/divr) print(f'chunk:: {chunk}') print(f'divr:: {divr}') print (f'divi:: {divi}') #out = [] #out="" s=0 e=chunk print(f'e:: {e}') new_history="" task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' for z in range(divi): print(f's:e :: {s}:{e}') hist = history[s:e] resp = run_gpt( COMPRESS_DATA_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=2048, seed=seed, purpose=purpose, task=task, knowledge=new_history, history=hist, ).strip('\n') new_history = resp print (resp) #out+=resp e=e+chunk s=s+chunk ''' resp = run_gpt( COMPRESS_DATA_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=2048, seed=seed, purpose=purpose, task=task, knowledge=new_history, history=result, ) ''' print ("final" + resp) #history = resp #history = "result: {}\n".format(resp) return resp def save_memory(purpose, history): uid=uuid.uuid4() history=str(history) c=0 inp = str(history) rl = len(inp) print(f'rl:: {rl}') for i in str(inp): if i == " " or i=="," or i=="\n" or i=="/" or i=="." or i=="<": c +=1 print (f'c:: {c}') seed=random.randint(1,1000000000) print (c) #tot=len(purpose) #print(tot) divr=int(c)/MAX_DATA divi=int(divr)+1 if divr != int(divr) else int(divr) chunk = int(int(c)/divr) print(f'chunk:: {chunk}') print(f'divr:: {divr}') print (f'divi:: {divi}') #out = [] #out="" s=0 e=chunk print(f'e:: {e}') new_history="" task = f'Index this Data\n' for z in range(divi): print(f's:e :: {s}:{e}') hist = inp[s:e] resp = run_gpt( SAVE_MEMORY, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=4096, seed=seed, purpose=purpose, task=task, knowledge=new_history, history=hist, ).strip('\n') new_history = resp print (resp) #out+=resp e=e+chunk s=s+chunk print ("final1" + resp) try: resp='[{'+resp.split('[{')[1].split('')[0] print ("final2\n" + resp) print(f"keywords:: {resp['keywords']}") except Exception as e: resp = resp print(e) timestamp=str(datetime.datetime.now()) timename=timestamp.replace(" ","--").replace(":","-").replace(".","-") json_object=resp #json_object = json.dumps(out_box) #json_object = json.dumps(out_box,indent=4) with open(f"tmp-{uid}.json", "w") as outfile: outfile.write(json_object) api.upload_file( path_or_fileobj=f"tmp-{uid}.json", path_in_repo=f"/mem-test/{timename}.json", repo_id=reponame, #repo_id=save_data.split('datasets/',1)[1].split('/raw',1)[0], token=token_self, repo_type="dataset", ) lines = resp.strip().strip("\n").split("\n") r = requests.get(f'{save_data}mem-test/main.json') print(f'status code main:: {r.status_code}') if r.status_code==200: lod = json.loads(r.text) #lod = eval(lod) print (f'lod:: {lod}') else: lod = [] for i,line in enumerate(lines): key_box=[] print(f'LINE:: {line}') if ":" in line: print(f'line:: {line}') if "keywords" in line[:16]: print(f'trying:: {line}') keyw=line.split(":")[1] print (keyw) print (keyw.split("[")[1].split("]")[0]) keyw=keyw.split("[")[1].split("]")[0] for ea in keyw.split(","): s1="" ea=ea.strip().strip("\n") for ev in ea: if ev.isalnum(): s1+=ev if ev == " ": s1+=ev #ea=s1 print(s1) key_box.append(s1) lod.append({"file_name":timename,"keywords":key_box}) json_object = json.dumps(lod, indent=4) with open(f"tmp2-{uid}.json", "w") as outfile2: outfile2.write(json_object) api.upload_file( path_or_fileobj=f"tmp2-{uid}.json", path_in_repo=f"/mem-test/main.json", repo_id=reponame, #repo_id=save_data.split('datasets/',1)[1].split('/raw',1)[0], token=token_self, repo_type="dataset", ) return [resp] def compress_history(purpose, task, history): resp = run_gpt( COMPRESS_HISTORY_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=1024, seed=random.randint(1,1000000000), purpose=purpose, task=task, history=history, ) history = "observation: {}\n".format(resp) return history def call_main(purpose, task, history, action_input, result): resp = run_gpt( FINDER, stop_tokens=["observation:", "task:"], max_tokens=2048, seed=random.randint(1,1000000000), purpose=purpose, task=task, history=history, ) lines = resp.strip().strip("\n").split("\n") #history="" for line in lines: if line == "": continue if line.startswith("thought: "): history += "{}\n".format(line) if line.startswith("action: "): action_name, action_input = parse_action(line) print(f'ACTION::{action_name} -- INPUT :: {action_input}') #history += "{}\n".format(line) return action_name, action_input, history, task, result else: pass #history += "{}\n".format(line) #assert False, "unknown action: {}".format(line) #return "UPDATE-TASK", None, history, task if "VERBOSE": print(history) return "MAIN", None, history, task, result def call_set_task(purpose, task, history, action_input, result): task = run_gpt( TASK_PROMPT, stop_tokens=[], max_tokens=1024, seed=random.randint(1,1000000000), purpose=purpose, task=task, history=history, ).strip("\n") history += "observation: task has been updated to: {}\n".format(task) return "MAIN", None, history, task, result ########################################################### def search_all(url): source="" return source def find_all(purpose,task,history, url, result): return_list=[] print (url) print (f"trying URL:: {url}") try: if url != "" and url != None: out = [] source = requests.get(url) if source.status_code ==200: soup = bs4.BeautifulSoup(source.content,'lxml') rawp=(f'RAW TEXT RETURNED: {soup.text}') cnt=0 cnt+=len(rawp) out.append(rawp) out.append("HTML fragments: ") q=("a","p","span","content","article") for p in soup.find_all("a"): out.append([{"LINK TITLE":p.get('title'),"URL":p.get('href'),"STRING":p.string}]) c=0 out = str(out) rl = len(out) print(f'rl:: {rl}') for i in str(out): if i == " " or i=="," or i=="\n" or i=="/" or i=="." or i=="<": c +=1 print (f'c:: {c}') #if c > MAX_HISTORY: print("compressing...") rawp = compress_data(c,purpose,task,out,result) result += rawp #else: # rawp = out #print (rawp) #print (f'out:: {out}') history += "observation: the search results are:\n {}\n".format(rawp) task = "compile report or complete?" return "MAIN", None, history, task, result else: history += f"observation: That URL string returned an error: {source.status_code}, I should try a different URL string\n" #result="Still Working..." return "MAIN", None, history, task, result else: history += "observation: An Error occured\nI need to trigger a search using the following syntax:\naction: SCRAPE_WEBSITE action_input=URL\n" return "MAIN", None, history, task, result except Exception as e: print (e) history += "observation: I need to trigger a search using the following syntax:\naction: SCRAPE_WEBSITE action_input=URL\n" return "MAIN", None, history, task, result #else: # history = "observation: The search query I used did not return a valid response" return "MAIN", None, history, task, result ################################# NAME_TO_FUNC = { "MAIN": call_main, "UPDATE-TASK": call_set_task, "SEARCH_ENGINE": find_all, "SCRAPE_WEBSITE": find_all, } def run_action(purpose, task, history, action_name, action_input,result): if "COMPLETE" in action_name: print("Complete - Exiting") #exit(0) return "COMPLETE", None, history, task, result # compress the history when it is long if len(history.split("\n")) > MAX_HISTORY: if VERBOSE: print("COMPRESSING HISTORY") history = compress_history(purpose, task, history) if action_name in NAME_TO_FUNC: assert action_name in NAME_TO_FUNC print(f"RUN: {action_name} ACTION_INPUT: {action_input}") return NAME_TO_FUNC[action_name](purpose, task, history, action_input, result) else: history += "observation: The TOOL I tried to use returned an error, I need to select a tool from: (UPDATE-TASK, SEARCH_ENGINE, SCRAPE_WEBSITE, COMPLETE)\n" return "MAIN", None, history, task, result def run(purpose,history): yield [(purpose,"Searching...")] task=None result="" #history = "" if not history: history = "" else: history=str(history) action_name = "MAIN" action_input = None while True: print("") print("") print("---") #print("purpose:", purpose) print("task:", task) print("---") #print(history) print("---") action_name, action_input, history, task, result = run_action( purpose, task, history, action_name, action_input, result ) if not result: yield [(purpose,"More Searching...")] else: yield [(purpose,result)] if action_name == "COMPLETE": break return [(purpose,result)] examples =[ "What is the current weather in Florida?", "Find breaking news about Texas", "Find the best deals on flippers for scuba diving", "Teach me to fly a helicopter" ] def clear_fn(): return None,None rand_val=random.randint(1,99999999999) def check_rand(inp,val): if inp==True: return gr.Slider(label="Seed", minimum=1, maximum=99999999999, value=random.randint(1,99999999999)) else: return gr.Slider(label="Seed", minimum=1, maximum=99999999999, value=int(val)) with gr.Blocks() as app: gr.HTML("""

Mixtral 8x7B RPG

Role Playing Game Master

""") with gr.Group(): with gr.Row(): with gr.Column(scale=3): chatbot=gr.Chatbot(show_label=False, show_share_button=True, show_copy_button=True, likeable=True, layout="panel", height="800px") with gr.Row(): with gr.Column(scale=3): opt=gr.Dropdown(label="Choices",choices=examples,allow_custom_value=True, value="Start a new game", interactive=True) #prompt=gr.Textbox(label = "Prompt", value="Start a new game") with gr.Column(scale=2): rand = gr.Checkbox(label="Random", value=True) seed=gr.Slider(label="Seed", minimum=1, maximum=99999999999, value=rand_val) #models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True) with gr.Row(): button=gr.Button() stop_button=gr.Button("Stop") clear_btn = gr.Button("Clear") with gr.Row(): tokens = gr.Slider(label="Max new tokens",value=2096,minimum=0,maximum=1048*10,step=64,interactive=False, visible=False,info="The maximum numbers of new tokens") with gr.Column(scale=1): save_btn=gr.Button("Save Memory") snap_btn=gr.Button("Take Screenshot") char_stats=gr.Textbox() json_out=gr.JSON() #text=gr.JSON() #inp_query.change(search_models,inp_query,models_dd) #test_b=test_btn.click(itt,url,e_box) save_btn.click(save_memory,[opt,chatbot],json_out) clear_btn.click(clear_fn,None,[opt,chatbot]) #go=button.click(check_rand,[rand,seed],seed).then(run,[opt,chatbot,tokens,char_stats,seed],[chatbot,char_stats,json_out,opt]) go=button.click(check_rand,[rand,seed],seed).then(run,[opt,chatbot],[chatbot]) stop_button.click(None,None,None,cancels=[go]) app.queue(default_concurrency_limit=20).launch(show_api=False) ''' examples =[ "What is the current weather in Florida?", "Find breaking news about Texas", "Find the best deals on flippers for scuba diving", "Teach me to fly a helicopter" ] gr.ChatInterface( fn=run, chatbot=gr.Chatbot(show_label=False, show_share_button=True, show_copy_button=True, likeable=True, layout="panel", height="800px"), title="Mixtral 46.7B Powered
Search", examples=examples, concurrency_limit=20, ).launch() '''