|
|
|
|
|
|
|
|
|
|
|
|
|
from itertools import product |
|
import math |
|
import random |
|
|
|
import pytest |
|
import torch |
|
from torch import nn |
|
|
|
from audiocraft.modules import ( |
|
NormConv1d, |
|
NormConvTranspose1d, |
|
StreamableConv1d, |
|
StreamableConvTranspose1d, |
|
pad1d, |
|
unpad1d, |
|
) |
|
|
|
|
|
def test_get_extra_padding_for_conv1d(): |
|
|
|
pass |
|
|
|
|
|
def test_pad1d_zeros(): |
|
x = torch.randn(1, 1, 20) |
|
|
|
xp1 = pad1d(x, (0, 5), mode='constant', value=0.) |
|
assert xp1.shape[-1] == 25 |
|
xp2 = pad1d(x, (5, 5), mode='constant', value=0.) |
|
assert xp2.shape[-1] == 30 |
|
xp3 = pad1d(x, (0, 0), mode='constant', value=0.) |
|
assert xp3.shape[-1] == 20 |
|
xp4 = pad1d(x, (10, 30), mode='constant', value=0.) |
|
assert xp4.shape[-1] == 60 |
|
|
|
with pytest.raises(AssertionError): |
|
pad1d(x, (-1, 0), mode='constant', value=0.) |
|
|
|
with pytest.raises(AssertionError): |
|
pad1d(x, (0, -1), mode='constant', value=0.) |
|
|
|
with pytest.raises(AssertionError): |
|
pad1d(x, (-1, -1), mode='constant', value=0.) |
|
|
|
|
|
def test_pad1d_reflect(): |
|
x = torch.randn(1, 1, 20) |
|
|
|
xp1 = pad1d(x, (0, 5), mode='reflect', value=0.) |
|
assert xp1.shape[-1] == 25 |
|
xp2 = pad1d(x, (5, 5), mode='reflect', value=0.) |
|
assert xp2.shape[-1] == 30 |
|
xp3 = pad1d(x, (0, 0), mode='reflect', value=0.) |
|
assert xp3.shape[-1] == 20 |
|
xp4 = pad1d(x, (10, 30), mode='reflect', value=0.) |
|
assert xp4.shape[-1] == 60 |
|
|
|
with pytest.raises(AssertionError): |
|
pad1d(x, (-1, 0), mode='reflect', value=0.) |
|
|
|
with pytest.raises(AssertionError): |
|
pad1d(x, (0, -1), mode='reflect', value=0.) |
|
|
|
with pytest.raises(AssertionError): |
|
pad1d(x, (-1, -1), mode='reflect', value=0.) |
|
|
|
|
|
def test_unpad1d(): |
|
x = torch.randn(1, 1, 20) |
|
|
|
u1 = unpad1d(x, (5, 5)) |
|
assert u1.shape[-1] == 10 |
|
u2 = unpad1d(x, (0, 5)) |
|
assert u2.shape[-1] == 15 |
|
u3 = unpad1d(x, (5, 0)) |
|
assert u3.shape[-1] == 15 |
|
u4 = unpad1d(x, (0, 0)) |
|
assert u4.shape[-1] == x.shape[-1] |
|
|
|
with pytest.raises(AssertionError): |
|
unpad1d(x, (-1, 0)) |
|
|
|
with pytest.raises(AssertionError): |
|
unpad1d(x, (0, -1)) |
|
|
|
with pytest.raises(AssertionError): |
|
unpad1d(x, (-1, -1)) |
|
|
|
|
|
class TestNormConv1d: |
|
|
|
def test_norm_conv1d_modules(self): |
|
N, C, T = 2, 2, random.randrange(1, 100_000) |
|
t0 = torch.randn(N, C, T) |
|
|
|
C_out, kernel_size, stride = 1, 4, 1 |
|
expected_out_length = int((T - kernel_size) / stride + 1) |
|
wn_conv = NormConv1d(C, 1, kernel_size=4, norm='weight_norm') |
|
gn_conv = NormConv1d(C, 1, kernel_size=4, norm='time_group_norm') |
|
nn_conv = NormConv1d(C, 1, kernel_size=4, norm='none') |
|
|
|
assert isinstance(wn_conv.norm, nn.Identity) |
|
assert isinstance(wn_conv.conv, nn.Conv1d) |
|
|
|
assert isinstance(gn_conv.norm, nn.GroupNorm) |
|
assert isinstance(gn_conv.conv, nn.Conv1d) |
|
|
|
assert isinstance(nn_conv.norm, nn.Identity) |
|
assert isinstance(nn_conv.conv, nn.Conv1d) |
|
|
|
for conv_layer in [wn_conv, gn_conv, nn_conv]: |
|
out = conv_layer(t0) |
|
assert isinstance(out, torch.Tensor) |
|
assert list(out.shape) == [N, C_out, expected_out_length] |
|
|
|
|
|
class TestNormConvTranspose1d: |
|
|
|
def test_normalizations(self): |
|
N, C, T = 2, 2, random.randrange(1, 100_000) |
|
t0 = torch.randn(N, C, T) |
|
|
|
C_out, kernel_size, stride = 1, 4, 1 |
|
expected_out_length = (T - 1) * stride + (kernel_size - 1) + 1 |
|
|
|
wn_convtr = NormConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, norm='weight_norm') |
|
gn_convtr = NormConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, norm='time_group_norm') |
|
nn_convtr = NormConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, norm='none') |
|
|
|
assert isinstance(wn_convtr.norm, nn.Identity) |
|
assert isinstance(wn_convtr.convtr, nn.ConvTranspose1d) |
|
|
|
assert isinstance(gn_convtr.norm, nn.GroupNorm) |
|
assert isinstance(gn_convtr.convtr, nn.ConvTranspose1d) |
|
|
|
assert isinstance(nn_convtr.norm, nn.Identity) |
|
assert isinstance(nn_convtr.convtr, nn.ConvTranspose1d) |
|
|
|
for convtr_layer in [wn_convtr, gn_convtr, nn_convtr]: |
|
out = convtr_layer(t0) |
|
assert isinstance(out, torch.Tensor) |
|
assert list(out.shape) == [N, C_out, expected_out_length] |
|
|
|
|
|
class TestStreamableConv1d: |
|
|
|
def get_streamable_conv1d_output_length(self, length, kernel_size, stride, dilation): |
|
|
|
padding_total = (kernel_size - 1) * dilation - (stride - 1) |
|
n_frames = (length - kernel_size + padding_total) / stride + 1 |
|
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) |
|
return ideal_length // stride |
|
|
|
def test_streamable_conv1d(self): |
|
N, C, T = 2, 2, random.randrange(1, 100_000) |
|
t0 = torch.randn(N, C, T) |
|
C_out = 1 |
|
|
|
|
|
conv_params = [(4, 1, 1), (4, 2, 1), (3, 1, 3), (10, 5, 1), (3, 2, 3)] |
|
for causal, (kernel_size, stride, dilation) in product([False, True], conv_params): |
|
expected_out_length = self.get_streamable_conv1d_output_length(T, kernel_size, stride, dilation) |
|
sconv = StreamableConv1d(C, C_out, kernel_size=kernel_size, stride=stride, dilation=dilation, causal=causal) |
|
out = sconv(t0) |
|
assert isinstance(out, torch.Tensor) |
|
print(list(out.shape), [N, C_out, expected_out_length]) |
|
assert list(out.shape) == [N, C_out, expected_out_length] |
|
|
|
|
|
class TestStreamableConvTranspose1d: |
|
|
|
def get_streamable_convtr1d_output_length(self, length, kernel_size, stride): |
|
padding_total = (kernel_size - stride) |
|
return (length - 1) * stride - padding_total + (kernel_size - 1) + 1 |
|
|
|
def test_streamable_convtr1d(self): |
|
N, C, T = 2, 2, random.randrange(1, 100_000) |
|
t0 = torch.randn(N, C, T) |
|
|
|
C_out = 1 |
|
|
|
with pytest.raises(AssertionError): |
|
StreamableConvTranspose1d(C, C_out, kernel_size=4, causal=False, trim_right_ratio=0.5) |
|
StreamableConvTranspose1d(C, C_out, kernel_size=4, causal=True, trim_right_ratio=-1.) |
|
StreamableConvTranspose1d(C, C_out, kernel_size=4, causal=True, trim_right_ratio=2) |
|
|
|
|
|
causal_params = [(False, 1.0), (True, 1.0), (True, 0.5), (True, 0.0)] |
|
|
|
conv_params = [(4, 1), (4, 2), (3, 1), (10, 5)] |
|
for ((causal, trim_right_ratio), (kernel_size, stride)) in product(causal_params, conv_params): |
|
expected_out_length = self.get_streamable_convtr1d_output_length(T, kernel_size, stride) |
|
sconvtr = StreamableConvTranspose1d(C, C_out, kernel_size=kernel_size, stride=stride, |
|
causal=causal, trim_right_ratio=trim_right_ratio) |
|
out = sconvtr(t0) |
|
assert isinstance(out, torch.Tensor) |
|
assert list(out.shape) == [N, C_out, expected_out_length] |
|
|