new version
Browse files- CHANGELOG.md +2 -0
- app_batched.py +157 -67
- audiocraft/modules/transformer.py +11 -8
CHANGELOG.md
CHANGED
@@ -13,6 +13,8 @@ Now repeating the conditioning periodically if it is too short.
|
|
13 |
|
14 |
More options when launching Gradio app locally (thanks @ashleykleynhans).
|
15 |
|
|
|
|
|
16 |
## [0.0.1] - 2023-06-09
|
17 |
|
18 |
Initial release, with model evaluation only.
|
|
|
13 |
|
14 |
More options when launching Gradio app locally (thanks @ashleykleynhans).
|
15 |
|
16 |
+
Testing out PyTorch 2.0 memory efficient attention.
|
17 |
+
|
18 |
## [0.0.1] - 2023-06-09
|
19 |
|
20 |
Initial release, with model evaluation only.
|
app_batched.py
CHANGED
@@ -6,7 +6,12 @@ This source code is licensed under the license found in the
|
|
6 |
LICENSE file in the root directory of this source tree.
|
7 |
"""
|
8 |
|
|
|
|
|
|
|
9 |
from tempfile import NamedTemporaryFile
|
|
|
|
|
10 |
import torch
|
11 |
import gradio as gr
|
12 |
from audiocraft.data.audio_utils import convert_audio
|
@@ -16,6 +21,29 @@ from audiocraft.models import MusicGen
|
|
16 |
|
17 |
MODEL = None
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def load_model():
|
21 |
print("Loading model")
|
@@ -28,11 +56,13 @@ def predict(texts, melodies):
|
|
28 |
MODEL = load_model()
|
29 |
|
30 |
duration = 12
|
|
|
|
|
31 |
MODEL.set_generation_params(duration=duration)
|
32 |
|
33 |
-
print(texts, melodies)
|
|
|
34 |
processed_melodies = []
|
35 |
-
|
36 |
target_sr = 32000
|
37 |
target_ac = 1
|
38 |
for melody in melodies:
|
@@ -60,73 +90,133 @@ def predict(texts, melodies):
|
|
60 |
audio_write(
|
61 |
file.name, output, MODEL.sample_rate, strategy="loudness",
|
62 |
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
],
|
102 |
-
[
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
)
|
118 |
-
gr.Markdown("""
|
119 |
-
### More details
|
120 |
|
121 |
-
|
122 |
-
You can optionaly provide a reference audio from which a broad melody will be extracted.
|
123 |
-
The model will then try to follow both the description and melody provided.
|
124 |
-
All samples are generated with the `melody` model.
|
125 |
-
|
126 |
-
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
demo.queue(max_size=15).launch()
|
|
|
6 |
LICENSE file in the root directory of this source tree.
|
7 |
"""
|
8 |
|
9 |
+
import argparse
|
10 |
+
from concurrent.futures import ProcessPoolExecutor
|
11 |
+
import subprocess as sp
|
12 |
from tempfile import NamedTemporaryFile
|
13 |
+
import time
|
14 |
+
import warnings
|
15 |
import torch
|
16 |
import gradio as gr
|
17 |
from audiocraft.data.audio_utils import convert_audio
|
|
|
21 |
|
22 |
MODEL = None
|
23 |
|
24 |
+
_old_call = sp.call
|
25 |
+
|
26 |
+
|
27 |
+
def _call_nostderr(*args, **kwargs):
|
28 |
+
# Avoid ffmpeg vomitting on the logs.
|
29 |
+
kwargs['stderr'] = sp.DEVNULL
|
30 |
+
kwargs['stdout'] = sp.DEVNULL
|
31 |
+
_old_call(*args, **kwargs)
|
32 |
+
|
33 |
+
|
34 |
+
sp.call = _call_nostderr
|
35 |
+
pool = ProcessPoolExecutor(3)
|
36 |
+
pool.__enter__()
|
37 |
+
|
38 |
+
|
39 |
+
def make_waveform(*args, **kwargs):
|
40 |
+
be = time.time()
|
41 |
+
with warnings.catch_warnings():
|
42 |
+
warnings.simplefilter('ignore')
|
43 |
+
out = gr.make_waveform(*args, **kwargs)
|
44 |
+
print("Make a video took", time.time() - be)
|
45 |
+
return out
|
46 |
+
|
47 |
|
48 |
def load_model():
|
49 |
print("Loading model")
|
|
|
56 |
MODEL = load_model()
|
57 |
|
58 |
duration = 12
|
59 |
+
max_text_length = 512
|
60 |
+
texts = [text[:max_text_length] for text in texts]
|
61 |
MODEL.set_generation_params(duration=duration)
|
62 |
|
63 |
+
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
|
64 |
+
be = time.time()
|
65 |
processed_melodies = []
|
|
|
66 |
target_sr = 32000
|
67 |
target_ac = 1
|
68 |
for melody in melodies:
|
|
|
90 |
audio_write(
|
91 |
file.name, output, MODEL.sample_rate, strategy="loudness",
|
92 |
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
|
93 |
+
out_files.append(pool.submit(make_waveform, file.name))
|
94 |
+
res = [[out_file.result() for out_file in out_files]]
|
95 |
+
print("batch finished", len(texts), time.time() - be)
|
96 |
+
return res
|
97 |
+
|
98 |
+
|
99 |
+
def ui(**kwargs):
|
100 |
+
with gr.Blocks() as demo:
|
101 |
+
gr.Markdown(
|
102 |
+
"""
|
103 |
+
# MusicGen
|
104 |
+
|
105 |
+
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
|
106 |
+
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
|
107 |
+
<br/>
|
108 |
+
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
|
109 |
+
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
110 |
+
for longer sequences, more control and no queue.</p>
|
111 |
+
"""
|
112 |
+
)
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column():
|
115 |
+
with gr.Row():
|
116 |
+
text = gr.Text(label="Describe your music", lines=2, interactive=True)
|
117 |
+
melody = gr.Audio(source="upload", type="numpy", label="Condition on a melody (optional)", interactive=True)
|
118 |
+
with gr.Row():
|
119 |
+
submit = gr.Button("Generate")
|
120 |
+
with gr.Column():
|
121 |
+
output = gr.Video(label="Generated Music")
|
122 |
+
submit.click(predict, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=8)
|
123 |
+
gr.Examples(
|
124 |
+
fn=predict,
|
125 |
+
examples=[
|
126 |
+
[
|
127 |
+
"An 80s driving pop song with heavy drums and synth pads in the background",
|
128 |
+
"./assets/bach.mp3",
|
129 |
+
],
|
130 |
+
[
|
131 |
+
"A cheerful country song with acoustic guitars",
|
132 |
+
"./assets/bolero_ravel.mp3",
|
133 |
+
],
|
134 |
+
[
|
135 |
+
"90s rock song with electric guitar and heavy drums",
|
136 |
+
None,
|
137 |
+
],
|
138 |
+
[
|
139 |
+
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
|
140 |
+
"./assets/bach.mp3",
|
141 |
+
],
|
142 |
+
[
|
143 |
+
"lofi slow bpm electro chill with organic samples",
|
144 |
+
None,
|
145 |
+
],
|
146 |
],
|
147 |
+
inputs=[text, melody],
|
148 |
+
outputs=[output]
|
149 |
+
)
|
150 |
+
gr.Markdown("""
|
151 |
+
### More details
|
152 |
+
|
153 |
+
The model will generate 12 seconds of audio based on the description you provided.
|
154 |
+
You can optionaly provide a reference audio from which a broad melody will be extracted.
|
155 |
+
The model will then try to follow both the description and melody provided.
|
156 |
+
All samples are generated with the `melody` model.
|
157 |
+
|
158 |
+
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
159 |
+
|
160 |
+
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
161 |
+
for more details.
|
162 |
+
""")
|
163 |
+
|
164 |
+
# Show the interface
|
165 |
+
launch_kwargs = {}
|
166 |
+
username = kwargs.get('username')
|
167 |
+
password = kwargs.get('password')
|
168 |
+
server_port = kwargs.get('server_port', 0)
|
169 |
+
inbrowser = kwargs.get('inbrowser', False)
|
170 |
+
share = kwargs.get('share', False)
|
171 |
+
server_name = kwargs.get('listen')
|
172 |
+
|
173 |
+
launch_kwargs['server_name'] = server_name
|
174 |
+
|
175 |
+
if username and password:
|
176 |
+
launch_kwargs['auth'] = (username, password)
|
177 |
+
if server_port > 0:
|
178 |
+
launch_kwargs['server_port'] = server_port
|
179 |
+
if inbrowser:
|
180 |
+
launch_kwargs['inbrowser'] = inbrowser
|
181 |
+
if share:
|
182 |
+
launch_kwargs['share'] = share
|
183 |
+
demo.queue(max_size=60).launch(**launch_kwargs)
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
parser = argparse.ArgumentParser()
|
187 |
+
parser.add_argument(
|
188 |
+
'--listen',
|
189 |
+
type=str,
|
190 |
+
default='127.0.0.1',
|
191 |
+
help='IP to listen on for connections to Gradio',
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
'--username', type=str, default='', help='Username for authentication'
|
195 |
+
)
|
196 |
+
parser.add_argument(
|
197 |
+
'--password', type=str, default='', help='Password for authentication'
|
198 |
+
)
|
199 |
+
parser.add_argument(
|
200 |
+
'--server_port',
|
201 |
+
type=int,
|
202 |
+
default=0,
|
203 |
+
help='Port to run the server listener on',
|
204 |
+
)
|
205 |
+
parser.add_argument(
|
206 |
+
'--inbrowser', action='store_true', help='Open in browser'
|
207 |
+
)
|
208 |
+
parser.add_argument(
|
209 |
+
'--share', action='store_true', help='Share the gradio UI'
|
210 |
)
|
|
|
|
|
211 |
|
212 |
+
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
ui(
|
215 |
+
username=args.username,
|
216 |
+
password=args.password,
|
217 |
+
inbrowser=args.inbrowser,
|
218 |
+
server_port=args.server_port,
|
219 |
+
share=args.share,
|
220 |
+
listen=args.listen
|
221 |
+
)
|
222 |
|
|
audiocraft/modules/transformer.py
CHANGED
@@ -247,20 +247,20 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
247 |
# Complete the key/value pair using the streaming state.
|
248 |
if self._streaming_state:
|
249 |
pk = self._streaming_state['past_keys']
|
250 |
-
nk = torch.cat([pk, k], dim=
|
251 |
if v is k:
|
252 |
nv = nk
|
253 |
else:
|
254 |
pv = self._streaming_state['past_values']
|
255 |
-
nv = torch.cat([pv, v], dim=
|
256 |
else:
|
257 |
nk = k
|
258 |
nv = v
|
259 |
|
260 |
-
assert nk.shape[
|
261 |
offset = 0
|
262 |
if self.past_context is not None:
|
263 |
-
offset = max(0, nk.shape[
|
264 |
if self._is_streaming:
|
265 |
self._streaming_state['past_keys'] = nk[:, offset:]
|
266 |
if v is not k:
|
@@ -271,6 +271,7 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
271 |
self._streaming_state['offset'] = torch.tensor(0)
|
272 |
return nk, nv
|
273 |
|
|
|
274 |
def _apply_rope(self, query: torch.Tensor, key: torch.Tensor):
|
275 |
# Apply rope embeddings to query and key tensors.
|
276 |
assert self.rope is not None
|
@@ -325,7 +326,7 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
325 |
q = self.q_layer_norm(q)
|
326 |
k = self.k_layer_norm(k)
|
327 |
# q, k, v = [rearrange(x, "b t (h d) -> (b h) t d", h=self.num_heads) for x in [q, k, v]]
|
328 |
-
q, k, v = [rearrange(x, "b t (h d) -> b t
|
329 |
else:
|
330 |
if not _is_profiled():
|
331 |
# profiling breaks that propertysomehow.
|
@@ -333,7 +334,7 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
333 |
assert value is key, "specialized implementation"
|
334 |
projected = nn.functional.linear(query, self.in_proj_weight, self.in_proj_bias)
|
335 |
if self.kv_repeat == 1:
|
336 |
-
packed = rearrange(projected, "b t (p h d) -> b
|
337 |
q, k, v = ops.unbind(packed, dim=2)
|
338 |
else:
|
339 |
embed_dim = self.embed_dim
|
@@ -355,6 +356,7 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
355 |
k = self.k_layer_norm(k)
|
356 |
q, k = [rearrange(x, "b t (h d) -> b t h d", h=self.num_heads) for x in [q, k]]
|
357 |
if self.rope:
|
|
|
358 |
q, k = self._apply_rope(q, k)
|
359 |
k, v = self._complete_kv(k, v)
|
360 |
if self.kv_repeat > 1:
|
@@ -364,7 +366,8 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
364 |
q, k, v = [x.float() for x in [q, k, v]]
|
365 |
if self.memory_efficient:
|
366 |
p = self.dropout if self.training else 0
|
367 |
-
x =
|
|
|
368 |
else:
|
369 |
# We include the dot product as float32, for consistency
|
370 |
# with the other implementations that include that step
|
@@ -385,7 +388,7 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
385 |
w = F.dropout(w, self.dropout, training=self.training).to(v)
|
386 |
x = torch.einsum("bhqk,bkhc->bqhc", w, v)
|
387 |
x = x.to(dtype)
|
388 |
-
x = rearrange(x, "b t
|
389 |
x = self.out_proj(x)
|
390 |
else:
|
391 |
key, value = self._complete_kv(key, value)
|
|
|
247 |
# Complete the key/value pair using the streaming state.
|
248 |
if self._streaming_state:
|
249 |
pk = self._streaming_state['past_keys']
|
250 |
+
nk = torch.cat([pk, k], dim=2)
|
251 |
if v is k:
|
252 |
nv = nk
|
253 |
else:
|
254 |
pv = self._streaming_state['past_values']
|
255 |
+
nv = torch.cat([pv, v], dim=2)
|
256 |
else:
|
257 |
nk = k
|
258 |
nv = v
|
259 |
|
260 |
+
assert nk.shape[2] == nv.shape[2]
|
261 |
offset = 0
|
262 |
if self.past_context is not None:
|
263 |
+
offset = max(0, nk.shape[2] - self.past_context)
|
264 |
if self._is_streaming:
|
265 |
self._streaming_state['past_keys'] = nk[:, offset:]
|
266 |
if v is not k:
|
|
|
271 |
self._streaming_state['offset'] = torch.tensor(0)
|
272 |
return nk, nv
|
273 |
|
274 |
+
|
275 |
def _apply_rope(self, query: torch.Tensor, key: torch.Tensor):
|
276 |
# Apply rope embeddings to query and key tensors.
|
277 |
assert self.rope is not None
|
|
|
326 |
q = self.q_layer_norm(q)
|
327 |
k = self.k_layer_norm(k)
|
328 |
# q, k, v = [rearrange(x, "b t (h d) -> (b h) t d", h=self.num_heads) for x in [q, k, v]]
|
329 |
+
q, k, v = [rearrange(x, "b t (h d) -> b h t d", h=self.num_heads) for x in [q, k, v]]
|
330 |
else:
|
331 |
if not _is_profiled():
|
332 |
# profiling breaks that propertysomehow.
|
|
|
334 |
assert value is key, "specialized implementation"
|
335 |
projected = nn.functional.linear(query, self.in_proj_weight, self.in_proj_bias)
|
336 |
if self.kv_repeat == 1:
|
337 |
+
packed = rearrange(projected, "b t (p h d) -> b h p t d", p=3, h=self.num_heads)
|
338 |
q, k, v = ops.unbind(packed, dim=2)
|
339 |
else:
|
340 |
embed_dim = self.embed_dim
|
|
|
356 |
k = self.k_layer_norm(k)
|
357 |
q, k = [rearrange(x, "b t (h d) -> b t h d", h=self.num_heads) for x in [q, k]]
|
358 |
if self.rope:
|
359 |
+
assert False, "Not supported for now"
|
360 |
q, k = self._apply_rope(q, k)
|
361 |
k, v = self._complete_kv(k, v)
|
362 |
if self.kv_repeat > 1:
|
|
|
366 |
q, k, v = [x.float() for x in [q, k, v]]
|
367 |
if self.memory_efficient:
|
368 |
p = self.dropout if self.training else 0
|
369 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
370 |
+
q, k, v, is_causal=attn_mask is not None, dropout_p=p)
|
371 |
else:
|
372 |
# We include the dot product as float32, for consistency
|
373 |
# with the other implementations that include that step
|
|
|
388 |
w = F.dropout(w, self.dropout, training=self.training).to(v)
|
389 |
x = torch.einsum("bhqk,bkhc->bqhc", w, v)
|
390 |
x = x.to(dtype)
|
391 |
+
x = rearrange(x, "b h t d -> b t (h d)", h=self.num_heads)
|
392 |
x = self.out_proj(x)
|
393 |
else:
|
394 |
key, value = self._complete_kv(key, value)
|