import gradio as gr import torch import numpy as np import modin.pandas as pd from PIL import Image from diffusers import DiffusionPipeline device = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.cuda.is_available(): PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 8000} torch.cuda.max_memory_allocated(device=device) torch.cuda.empty_cache() pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) torch.cuda.empty_cache() refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") refiner.enable_xformers_memory_efficient_attention() refiner = refiner.to(device) torch.cuda.empty_cache() upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True) upscaler.enable_xformers_memory_efficient_attention() upscaler = upscaler.to(device) torch.cuda.empty_cache() else: pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True) pipe = pipe.to(device) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True) refiner = refiner.to(device) refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) def genie (prompt, negative_prompt, height, width, scale, steps, seed, upscaling, prompt_2, negative_prompt_2, high_noise_frac, n_steps): generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) int_image = pipe(prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images if upscaling == 'Yes': image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, num_inference_steps=n_steps, denoising_start=high_noise_frac).images[0] #num_inference_steps=n_steps, upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0] torch.cuda.empty_cache() return (image, upscaled) else: image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, num_inference_steps=n_steps ,denoising_start=high_noise_frac).images[0] torch.cuda.empty_cache() return (image, image) gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit. A Token is Any Word, Number, Symbol, or Punctuation. Everything Over 77 Will Be Truncated!'), gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'), gr.Slider(512, 1024, 768, step=128, label='Height'), gr.Slider(512, 1024, 768, step=128, label='Width'), gr.Slider(1, 15, 10, step=.25, label='Guidance Scale: How Closely the AI follows the Prompt'), gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'), gr.Slider(minimum=0, step=1, maximum=999999999999999999, randomize=True, label='Seed: 0 is Random'), gr.Radio(['Yes', 'No'], value='No', label='Upscale?'), gr.Textbox(label='Embedded Prompt'), gr.Textbox(label='Embedded Negative Prompt'), gr.Slider(minimum=.7, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'), gr.Slider(minimum=1, maximum=100, value=100, step=1, label='Refiner Number of Iterations %')], outputs=['image', 'image'], title="Stable Diffusion XL 1.0 GPU", description="SDXL 1.0 GPU.

WARNING: Capable of producing NSFW (Softcore) images.", article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets.
BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84
3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP
DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez
SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
PayPal: https://www.paypal.me/ManjushriBodhisattva
ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
Code Monkey: Manjushri").launch(debug=True, max_threads=80)