Spaces:
Runtime error
Runtime error
Duplicate from ArtGAN/Video-Diffusion-WebUI
Browse filesCo-authored-by: Kadir Nar <kadirnar@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +16 -0
- app.py +50 -0
- requirements.txt +12 -0
- video_diffusion/__init__.py +1 -0
- video_diffusion/damo/damo_text2_video.py +126 -0
- video_diffusion/inpaint_zoom/__init__.py +0 -0
- video_diffusion/inpaint_zoom/utils/__init__.py +0 -0
- video_diffusion/inpaint_zoom/utils/zoom_in_utils.py +75 -0
- video_diffusion/inpaint_zoom/utils/zoom_out_utils.py +47 -0
- video_diffusion/inpaint_zoom/zoom_in_app.py +186 -0
- video_diffusion/inpaint_zoom/zoom_out_app.py +140 -0
- video_diffusion/stable_diffusion_video/__init__.py +0 -0
- video_diffusion/stable_diffusion_video/image_generation.py +363 -0
- video_diffusion/stable_diffusion_video/stable_diffusion_pipeline.py +848 -0
- video_diffusion/stable_diffusion_video/stable_video_text2video.py +158 -0
- video_diffusion/stable_diffusion_video/upsampling.py +104 -0
- video_diffusion/stable_diffusion_video/utils.py +135 -0
- video_diffusion/tuneavideo/models/attention.py +322 -0
- video_diffusion/tuneavideo/models/resnet.py +208 -0
- video_diffusion/tuneavideo/models/unet.py +437 -0
- video_diffusion/tuneavideo/models/unet_blocks.py +588 -0
- video_diffusion/tuneavideo/pipelines/pipeline_tuneavideo.py +411 -0
- video_diffusion/tuneavideo/tuneavideo_text2video.py +153 -0
- video_diffusion/tuneavideo/util.py +93 -0
- video_diffusion/utils/__init__.py +0 -0
- video_diffusion/utils/model_list.py +6 -0
- video_diffusion/utils/scheduler_list.py +32 -0
- video_diffusion/zero_shot/zero_shot_text2video.py +164 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Video Diffusion WebUI
|
3 |
+
emoji: 🏃
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.19.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
tags:
|
12 |
+
- making-demos
|
13 |
+
duplicated_from: ArtGAN/Video-Diffusion-WebUI
|
14 |
+
---
|
15 |
+
|
16 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from video_diffusion.damo.damo_text2_video import DamoText2VideoGenerator
|
4 |
+
from video_diffusion.inpaint_zoom.zoom_in_app import StableDiffusionZoomIn
|
5 |
+
from video_diffusion.inpaint_zoom.zoom_out_app import StableDiffusionZoomOut
|
6 |
+
from video_diffusion.stable_diffusion_video.stable_video_text2video import StableDiffusionText2VideoGenerator
|
7 |
+
from video_diffusion.tuneavideo.tuneavideo_text2video import TunaVideoText2VideoGenerator
|
8 |
+
from video_diffusion.zero_shot.zero_shot_text2video import ZeroShotText2VideoGenerator
|
9 |
+
|
10 |
+
|
11 |
+
def diffusion_app():
|
12 |
+
app = gr.Blocks()
|
13 |
+
with app:
|
14 |
+
gr.HTML(
|
15 |
+
"""
|
16 |
+
<h1 style='text-align: center'>
|
17 |
+
Video Diffusion WebUI
|
18 |
+
</h1>
|
19 |
+
"""
|
20 |
+
)
|
21 |
+
gr.HTML(
|
22 |
+
"""
|
23 |
+
<h3 style='text-align: center'>
|
24 |
+
Follow me for more!
|
25 |
+
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
|
26 |
+
</h3>
|
27 |
+
"""
|
28 |
+
)
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
with gr.Tab("Stable Diffusion Video"):
|
32 |
+
StableDiffusionText2VideoGenerator.app()
|
33 |
+
with gr.Tab("Tune-a-Video"):
|
34 |
+
TunaVideoText2VideoGenerator.app()
|
35 |
+
with gr.Tab("Stable Infinite Zoom"):
|
36 |
+
with gr.Tab("Zoom In"):
|
37 |
+
StableDiffusionZoomIn.app()
|
38 |
+
with gr.Tab("Zoom Out"):
|
39 |
+
StableDiffusionZoomOut.app()
|
40 |
+
with gr.Tab("Damo Text2Video"):
|
41 |
+
DamoText2VideoGenerator.app()
|
42 |
+
with gr.Tab("Zero Shot Text2Video"):
|
43 |
+
ZeroShotText2VideoGenerator.app()
|
44 |
+
|
45 |
+
app.queue(concurrency_count=1)
|
46 |
+
app.launch(debug=True, enable_queue=True)
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
diffusion_app()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.0.0
|
2 |
+
git+https://github.com/huggingface/diffusers
|
3 |
+
transformers
|
4 |
+
accelerate
|
5 |
+
opencv-python
|
6 |
+
realesrgan==0.2.5.0
|
7 |
+
librosa
|
8 |
+
xformers
|
9 |
+
einops
|
10 |
+
av<10.0.0
|
11 |
+
imageio==2.9.0
|
12 |
+
imageio-ffmpeg==0.4.2
|
video_diffusion/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__version__ = "0.0.1"
|
video_diffusion/damo/damo_text2_video.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
4 |
+
from diffusers.utils import export_to_video
|
5 |
+
|
6 |
+
from video_diffusion.utils.scheduler_list import diff_scheduler_list, get_scheduler_list
|
7 |
+
|
8 |
+
stable_model_list =["damo-vilab/text-to-video-ms-1.7b","cerspense/zeroscope_v2_576w"]
|
9 |
+
|
10 |
+
class DamoText2VideoGenerator:
|
11 |
+
def __init__(self):
|
12 |
+
self.pipe = None
|
13 |
+
|
14 |
+
def load_model(self, stable_model, scheduler):
|
15 |
+
if self.pipe is None:
|
16 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
17 |
+
stable_model, torch_dtype=torch.float16, variant="fp16"
|
18 |
+
)
|
19 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
20 |
+
self.pipe.to("cuda")
|
21 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
22 |
+
return self.pipe
|
23 |
+
|
24 |
+
def generate_video(
|
25 |
+
self,
|
26 |
+
prompt: str,
|
27 |
+
negative_prompt: str,
|
28 |
+
stable_model:str,
|
29 |
+
num_frames: int,
|
30 |
+
num_inference_steps: int,
|
31 |
+
guidance_scale: int,
|
32 |
+
height: int,
|
33 |
+
width: int,
|
34 |
+
scheduler: str,
|
35 |
+
):
|
36 |
+
pipe = self.load_model(stable_model=stable_model, scheduler=scheduler)
|
37 |
+
video = pipe(
|
38 |
+
prompt,
|
39 |
+
negative_prompt=negative_prompt,
|
40 |
+
num_frames=int(num_frames),
|
41 |
+
height=height,
|
42 |
+
width=width,
|
43 |
+
num_inference_steps=num_inference_steps,
|
44 |
+
guidance_scale=guidance_scale,
|
45 |
+
).frames
|
46 |
+
|
47 |
+
video_path = export_to_video(video)
|
48 |
+
return video_path
|
49 |
+
|
50 |
+
def app():
|
51 |
+
with gr.Blocks():
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column():
|
54 |
+
dano_text2video_prompt = gr.Textbox(lines=1, placeholder="Prompt", show_label=False)
|
55 |
+
dano_text2video_negative_prompt = gr.Textbox(
|
56 |
+
lines=1, placeholder="Negative Prompt", show_label=False
|
57 |
+
)
|
58 |
+
with gr.Row():
|
59 |
+
with gr.Column():
|
60 |
+
dano_text2video_model_list = gr.Dropdown(
|
61 |
+
choices=stable_model_list,
|
62 |
+
label="Model List",
|
63 |
+
value=stable_model_list[0],
|
64 |
+
)
|
65 |
+
|
66 |
+
dano_text2video_num_inference_steps = gr.Slider(
|
67 |
+
minimum=1,
|
68 |
+
maximum=100,
|
69 |
+
value=50,
|
70 |
+
step=1,
|
71 |
+
label="Inference Steps",
|
72 |
+
)
|
73 |
+
dano_text2video_guidance_scale = gr.Slider(
|
74 |
+
minimum=1,
|
75 |
+
maximum=15,
|
76 |
+
value=7,
|
77 |
+
step=1,
|
78 |
+
label="Guidance Scale",
|
79 |
+
)
|
80 |
+
dano_text2video_num_frames = gr.Slider(
|
81 |
+
minimum=1,
|
82 |
+
maximum=50,
|
83 |
+
value=16,
|
84 |
+
step=1,
|
85 |
+
label="Number of Frames",
|
86 |
+
)
|
87 |
+
with gr.Row():
|
88 |
+
with gr.Column():
|
89 |
+
dano_text2video_height = gr.Slider(
|
90 |
+
minimum=128,
|
91 |
+
maximum=1280,
|
92 |
+
value=512,
|
93 |
+
step=32,
|
94 |
+
label="Height",
|
95 |
+
)
|
96 |
+
dano_text2video_width = gr.Slider(
|
97 |
+
minimum=128,
|
98 |
+
maximum=1280,
|
99 |
+
value=512,
|
100 |
+
step=32,
|
101 |
+
label="Width",
|
102 |
+
)
|
103 |
+
damo_text2video_scheduler = gr.Dropdown(
|
104 |
+
choices=diff_scheduler_list,
|
105 |
+
label="Scheduler",
|
106 |
+
value=diff_scheduler_list[6],
|
107 |
+
)
|
108 |
+
dano_text2video_generate = gr.Button(value="Generator")
|
109 |
+
with gr.Column():
|
110 |
+
dano_output = gr.Video(label="Output")
|
111 |
+
|
112 |
+
dano_text2video_generate.click(
|
113 |
+
fn=DamoText2VideoGenerator().generate_video,
|
114 |
+
inputs=[
|
115 |
+
dano_text2video_prompt,
|
116 |
+
dano_text2video_negative_prompt,
|
117 |
+
dano_text2video_model_list,
|
118 |
+
dano_text2video_num_frames,
|
119 |
+
dano_text2video_num_inference_steps,
|
120 |
+
dano_text2video_guidance_scale,
|
121 |
+
dano_text2video_height,
|
122 |
+
dano_text2video_width,
|
123 |
+
damo_text2video_scheduler,
|
124 |
+
],
|
125 |
+
outputs=dano_output,
|
126 |
+
)
|
video_diffusion/inpaint_zoom/__init__.py
ADDED
File without changes
|
video_diffusion/inpaint_zoom/utils/__init__.py
ADDED
File without changes
|
video_diffusion/inpaint_zoom/utils/zoom_in_utils.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
8 |
+
|
9 |
+
|
10 |
+
def write_video(file_path, frames, fps, reversed=True):
|
11 |
+
"""
|
12 |
+
Writes frames to an mp4 video file
|
13 |
+
:param file_path: Path to output video, must end with .mp4
|
14 |
+
:param frames: List of PIL.Image objects
|
15 |
+
:param fps: Desired frame rate
|
16 |
+
:param reversed: if order of images to be reversed (default = True)
|
17 |
+
"""
|
18 |
+
if reversed == True:
|
19 |
+
frames.reverse()
|
20 |
+
|
21 |
+
w, h = frames[0].size
|
22 |
+
fourcc = cv2.VideoWriter_fourcc("m", "p", "4", "v")
|
23 |
+
# fourcc = cv2.VideoWriter_fourcc(*'avc1')
|
24 |
+
writer = cv2.VideoWriter(file_path, fourcc, fps, (w, h))
|
25 |
+
|
26 |
+
for frame in frames:
|
27 |
+
np_frame = np.array(frame.convert("RGB"))
|
28 |
+
cv_frame = cv2.cvtColor(np_frame, cv2.COLOR_RGB2BGR)
|
29 |
+
writer.write(cv_frame)
|
30 |
+
|
31 |
+
writer.release()
|
32 |
+
|
33 |
+
|
34 |
+
def image_grid(imgs, rows, cols):
|
35 |
+
assert len(imgs) == rows * cols
|
36 |
+
|
37 |
+
w, h = imgs[0].size
|
38 |
+
grid = Image.new("RGB", size=(cols * w, rows * h))
|
39 |
+
grid_w, grid_h = grid.size
|
40 |
+
|
41 |
+
for i, img in enumerate(imgs):
|
42 |
+
grid.paste(img, box=(i % cols * w, i // cols * h))
|
43 |
+
return grid
|
44 |
+
|
45 |
+
|
46 |
+
def shrink_and_paste_on_blank(current_image, mask_width):
|
47 |
+
"""
|
48 |
+
Decreases size of current_image by mask_width pixels from each side,
|
49 |
+
then adds a mask_width width transparent frame,
|
50 |
+
so that the image the function returns is the same size as the input.
|
51 |
+
:param current_image: input image to transform
|
52 |
+
:param mask_width: width in pixels to shrink from each side
|
53 |
+
"""
|
54 |
+
|
55 |
+
height = current_image.height
|
56 |
+
width = current_image.width
|
57 |
+
|
58 |
+
# shrink down by mask_width
|
59 |
+
prev_image = current_image.resize((height - 2 * mask_width, width - 2 * mask_width))
|
60 |
+
prev_image = prev_image.convert("RGBA")
|
61 |
+
prev_image = np.array(prev_image)
|
62 |
+
|
63 |
+
# create blank non-transparent image
|
64 |
+
blank_image = np.array(current_image.convert("RGBA")) * 0
|
65 |
+
blank_image[:, :, 3] = 1
|
66 |
+
|
67 |
+
# paste shrinked onto blank
|
68 |
+
blank_image[mask_width : height - mask_width, mask_width : width - mask_width, :] = prev_image
|
69 |
+
prev_image = Image.fromarray(blank_image)
|
70 |
+
|
71 |
+
return prev_image
|
72 |
+
|
73 |
+
|
74 |
+
def dummy(images, **kwargs):
|
75 |
+
return images, False
|
video_diffusion/inpaint_zoom/utils/zoom_out_utils.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
def write_video(file_path, frames, fps):
|
7 |
+
"""
|
8 |
+
Writes frames to an mp4 video file
|
9 |
+
:param file_path: Path to output video, must end with .mp4
|
10 |
+
:param frames: List of PIL.Image objects
|
11 |
+
:param fps: Desired frame rate
|
12 |
+
"""
|
13 |
+
|
14 |
+
w, h = frames[0].size
|
15 |
+
fourcc = cv2.VideoWriter_fourcc("m", "p", "4", "v")
|
16 |
+
writer = cv2.VideoWriter(file_path, fourcc, fps, (w, h))
|
17 |
+
|
18 |
+
for frame in frames:
|
19 |
+
np_frame = np.array(frame.convert("RGB"))
|
20 |
+
cv_frame = cv2.cvtColor(np_frame, cv2.COLOR_RGB2BGR)
|
21 |
+
writer.write(cv_frame)
|
22 |
+
|
23 |
+
writer.release()
|
24 |
+
|
25 |
+
|
26 |
+
def dummy(images, **kwargs):
|
27 |
+
return images, False
|
28 |
+
|
29 |
+
|
30 |
+
def preprocess_image(current_image, steps, image_size):
|
31 |
+
next_image = np.array(current_image.convert("RGBA")) * 0
|
32 |
+
prev_image = current_image.resize((image_size - 2 * steps, image_size - 2 * steps))
|
33 |
+
prev_image = prev_image.convert("RGBA")
|
34 |
+
prev_image = np.array(prev_image)
|
35 |
+
next_image[:, :, 3] = 1
|
36 |
+
next_image[steps : image_size - steps, steps : image_size - steps, :] = prev_image
|
37 |
+
prev_image = Image.fromarray(next_image)
|
38 |
+
|
39 |
+
return prev_image
|
40 |
+
|
41 |
+
|
42 |
+
def preprocess_mask_image(current_image):
|
43 |
+
mask_image = np.array(current_image)[:, :, 3] # assume image has alpha mask (use .mode to check for "RGBA")
|
44 |
+
mask_image = Image.fromarray(255 - mask_image).convert("RGB")
|
45 |
+
current_image = current_image.convert("RGB")
|
46 |
+
|
47 |
+
return current_image, mask_image
|
video_diffusion/inpaint_zoom/zoom_in_app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from video_diffusion.inpaint_zoom.utils.zoom_in_utils import dummy, image_grid, shrink_and_paste_on_blank, write_video
|
10 |
+
|
11 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
12 |
+
|
13 |
+
|
14 |
+
stable_paint_model_list = ["stabilityai/stable-diffusion-2-inpainting", "runwayml/stable-diffusion-inpainting"]
|
15 |
+
|
16 |
+
stable_paint_prompt_list = [
|
17 |
+
"children running in the forest , sunny, bright, by studio ghibli painting, superior quality, masterpiece, traditional Japanese colors, by Grzegorz Rutkowski, concept art",
|
18 |
+
"A beautiful landscape of a mountain range with a lake in the foreground",
|
19 |
+
]
|
20 |
+
|
21 |
+
stable_paint_negative_prompt_list = [
|
22 |
+
"lurry, bad art, blurred, text, watermark",
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
class StableDiffusionZoomIn:
|
27 |
+
def __init__(self):
|
28 |
+
self.pipe = None
|
29 |
+
|
30 |
+
def load_model(self, model_id):
|
31 |
+
if self.pipe is None:
|
32 |
+
self.pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
|
33 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
34 |
+
self.pipe = self.pipe.to("cuda")
|
35 |
+
self.pipe.safety_checker = dummy
|
36 |
+
self.pipe.enable_attention_slicing()
|
37 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
38 |
+
self.g_cuda = torch.Generator(device="cuda")
|
39 |
+
|
40 |
+
return self.pipe
|
41 |
+
|
42 |
+
def generate_video(
|
43 |
+
self,
|
44 |
+
model_id,
|
45 |
+
prompt,
|
46 |
+
negative_prompt,
|
47 |
+
guidance_scale,
|
48 |
+
num_inference_steps,
|
49 |
+
):
|
50 |
+
pipe = self.load_model(model_id)
|
51 |
+
|
52 |
+
num_init_images = 2
|
53 |
+
seed = 42
|
54 |
+
height = 512
|
55 |
+
width = height
|
56 |
+
|
57 |
+
current_image = Image.new(mode="RGBA", size=(height, width))
|
58 |
+
mask_image = np.array(current_image)[:, :, 3]
|
59 |
+
mask_image = Image.fromarray(255 - mask_image).convert("RGB")
|
60 |
+
current_image = current_image.convert("RGB")
|
61 |
+
|
62 |
+
init_images = pipe(
|
63 |
+
prompt=[prompt] * num_init_images,
|
64 |
+
negative_prompt=[negative_prompt] * num_init_images,
|
65 |
+
image=current_image,
|
66 |
+
guidance_scale=guidance_scale,
|
67 |
+
height=height,
|
68 |
+
width=width,
|
69 |
+
generator=self.g_cuda.manual_seed(seed),
|
70 |
+
mask_image=mask_image,
|
71 |
+
num_inference_steps=num_inference_steps,
|
72 |
+
)[0]
|
73 |
+
|
74 |
+
image_grid(init_images, rows=1, cols=num_init_images)
|
75 |
+
|
76 |
+
init_image_selected = 1 # @param
|
77 |
+
if num_init_images == 1:
|
78 |
+
init_image_selected = 0
|
79 |
+
else:
|
80 |
+
init_image_selected = init_image_selected - 1
|
81 |
+
|
82 |
+
num_outpainting_steps = 20 # @param
|
83 |
+
mask_width = 128 # @param
|
84 |
+
num_interpol_frames = 30 # @param
|
85 |
+
|
86 |
+
current_image = init_images[init_image_selected]
|
87 |
+
all_frames = []
|
88 |
+
all_frames.append(current_image)
|
89 |
+
|
90 |
+
for i in range(num_outpainting_steps):
|
91 |
+
print("Generating image: " + str(i + 1) + " / " + str(num_outpainting_steps))
|
92 |
+
|
93 |
+
prev_image_fix = current_image
|
94 |
+
|
95 |
+
prev_image = shrink_and_paste_on_blank(current_image, mask_width)
|
96 |
+
|
97 |
+
current_image = prev_image
|
98 |
+
|
99 |
+
# create mask (black image with white mask_width width edges)
|
100 |
+
mask_image = np.array(current_image)[:, :, 3]
|
101 |
+
mask_image = Image.fromarray(255 - mask_image).convert("RGB")
|
102 |
+
|
103 |
+
# inpainting step
|
104 |
+
current_image = current_image.convert("RGB")
|
105 |
+
images = pipe(
|
106 |
+
prompt=prompt,
|
107 |
+
negative_prompt=negative_prompt,
|
108 |
+
image=current_image,
|
109 |
+
guidance_scale=guidance_scale,
|
110 |
+
height=height,
|
111 |
+
width=width,
|
112 |
+
# this can make the whole thing deterministic but the output less exciting
|
113 |
+
# generator = g_cuda.manual_seed(seed),
|
114 |
+
mask_image=mask_image,
|
115 |
+
num_inference_steps=num_inference_steps,
|
116 |
+
)[0]
|
117 |
+
current_image = images[0]
|
118 |
+
current_image.paste(prev_image, mask=prev_image)
|
119 |
+
|
120 |
+
# interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
|
121 |
+
for j in range(num_interpol_frames - 1):
|
122 |
+
interpol_image = current_image
|
123 |
+
interpol_width = round(
|
124 |
+
(1 - (1 - 2 * mask_width / height) ** (1 - (j + 1) / num_interpol_frames)) * height / 2
|
125 |
+
)
|
126 |
+
interpol_image = interpol_image.crop(
|
127 |
+
(interpol_width, interpol_width, width - interpol_width, height - interpol_width)
|
128 |
+
)
|
129 |
+
|
130 |
+
interpol_image = interpol_image.resize((height, width))
|
131 |
+
|
132 |
+
# paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
|
133 |
+
interpol_width2 = round((1 - (height - 2 * mask_width) / (height - 2 * interpol_width)) / 2 * height)
|
134 |
+
prev_image_fix_crop = shrink_and_paste_on_blank(prev_image_fix, interpol_width2)
|
135 |
+
interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop)
|
136 |
+
|
137 |
+
all_frames.append(interpol_image)
|
138 |
+
|
139 |
+
all_frames.append(current_image)
|
140 |
+
|
141 |
+
video_file_name = "infinite_zoom_out"
|
142 |
+
fps = 30
|
143 |
+
save_path = video_file_name + ".mp4"
|
144 |
+
write_video(save_path, all_frames, fps)
|
145 |
+
return save_path
|
146 |
+
|
147 |
+
def app():
|
148 |
+
with gr.Blocks():
|
149 |
+
with gr.Row():
|
150 |
+
with gr.Column():
|
151 |
+
text2image_in_model_path = gr.Dropdown(
|
152 |
+
choices=stable_paint_model_list, value=stable_paint_model_list[0], label="Text-Image Model Id"
|
153 |
+
)
|
154 |
+
|
155 |
+
text2image_in_prompt = gr.Textbox(lines=2, value=stable_paint_prompt_list[0], label="Prompt")
|
156 |
+
|
157 |
+
text2image_in_negative_prompt = gr.Textbox(
|
158 |
+
lines=1, value=stable_paint_negative_prompt_list[0], label="Negative Prompt"
|
159 |
+
)
|
160 |
+
|
161 |
+
with gr.Row():
|
162 |
+
with gr.Column():
|
163 |
+
text2image_in_guidance_scale = gr.Slider(
|
164 |
+
minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale"
|
165 |
+
)
|
166 |
+
|
167 |
+
text2image_in_num_inference_step = gr.Slider(
|
168 |
+
minimum=1, maximum=100, step=1, value=50, label="Num Inference Step"
|
169 |
+
)
|
170 |
+
|
171 |
+
text2image_in_predict = gr.Button(value="Generator")
|
172 |
+
|
173 |
+
with gr.Column():
|
174 |
+
output_image = gr.Video(label="Output")
|
175 |
+
|
176 |
+
text2image_in_predict.click(
|
177 |
+
fn=StableDiffusionZoomIn().generate_video,
|
178 |
+
inputs=[
|
179 |
+
text2image_in_model_path,
|
180 |
+
text2image_in_prompt,
|
181 |
+
text2image_in_negative_prompt,
|
182 |
+
text2image_in_guidance_scale,
|
183 |
+
text2image_in_num_inference_step,
|
184 |
+
],
|
185 |
+
outputs=output_image,
|
186 |
+
)
|
video_diffusion/inpaint_zoom/zoom_out_app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
from video_diffusion.inpaint_zoom.utils.zoom_out_utils import (
|
9 |
+
dummy,
|
10 |
+
preprocess_image,
|
11 |
+
preprocess_mask_image,
|
12 |
+
write_video,
|
13 |
+
)
|
14 |
+
|
15 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
16 |
+
|
17 |
+
|
18 |
+
stable_paint_model_list = ["stabilityai/stable-diffusion-2-inpainting", "runwayml/stable-diffusion-inpainting"]
|
19 |
+
|
20 |
+
stable_paint_prompt_list = [
|
21 |
+
"children running in the forest , sunny, bright, by studio ghibli painting, superior quality, masterpiece, traditional Japanese colors, by Grzegorz Rutkowski, concept art",
|
22 |
+
"A beautiful landscape of a mountain range with a lake in the foreground",
|
23 |
+
]
|
24 |
+
|
25 |
+
stable_paint_negative_prompt_list = [
|
26 |
+
"lurry, bad art, blurred, text, watermark",
|
27 |
+
]
|
28 |
+
|
29 |
+
|
30 |
+
class StableDiffusionZoomOut:
|
31 |
+
def __init__(self):
|
32 |
+
self.pipe = None
|
33 |
+
|
34 |
+
def load_model(self, model_id):
|
35 |
+
if self.pipe is None:
|
36 |
+
self.pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
37 |
+
self.pipe.set_use_memory_efficient_attention_xformers(True)
|
38 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
39 |
+
self.pipe = self.pipe.to("cuda")
|
40 |
+
self.pipe.safety_checker = dummy
|
41 |
+
self.g_cuda = torch.Generator(device="cuda")
|
42 |
+
|
43 |
+
return self.pipe
|
44 |
+
|
45 |
+
def generate_video(
|
46 |
+
self,
|
47 |
+
model_id,
|
48 |
+
prompt,
|
49 |
+
negative_prompt,
|
50 |
+
guidance_scale,
|
51 |
+
num_inference_steps,
|
52 |
+
num_frames,
|
53 |
+
step_size,
|
54 |
+
):
|
55 |
+
pipe = self.load_model(model_id)
|
56 |
+
|
57 |
+
new_image = Image.new(mode="RGBA", size=(512, 512))
|
58 |
+
current_image, mask_image = preprocess_mask_image(new_image)
|
59 |
+
|
60 |
+
current_image = pipe(
|
61 |
+
prompt=[prompt],
|
62 |
+
negative_prompt=[negative_prompt],
|
63 |
+
image=current_image,
|
64 |
+
mask_image=mask_image,
|
65 |
+
num_inference_steps=num_inference_steps,
|
66 |
+
guidance_scale=guidance_scale,
|
67 |
+
).images[0]
|
68 |
+
|
69 |
+
all_frames = []
|
70 |
+
all_frames.append(current_image)
|
71 |
+
|
72 |
+
for i in range(num_frames):
|
73 |
+
prev_image = preprocess_image(current_image, step_size, 512)
|
74 |
+
current_image = prev_image
|
75 |
+
current_image, mask_image = preprocess_mask_image(current_image)
|
76 |
+
current_image = pipe(
|
77 |
+
prompt=[prompt],
|
78 |
+
negative_prompt=[negative_prompt],
|
79 |
+
image=current_image,
|
80 |
+
mask_image=mask_image,
|
81 |
+
num_inference_steps=num_inference_steps,
|
82 |
+
).images[0]
|
83 |
+
current_image.paste(prev_image, mask=prev_image)
|
84 |
+
all_frames.append(current_image)
|
85 |
+
|
86 |
+
save_path = "output.mp4"
|
87 |
+
write_video(save_path, all_frames, fps=30)
|
88 |
+
return save_path
|
89 |
+
|
90 |
+
def app():
|
91 |
+
with gr.Blocks():
|
92 |
+
with gr.Row():
|
93 |
+
with gr.Column():
|
94 |
+
text2image_out_model_path = gr.Dropdown(
|
95 |
+
choices=stable_paint_model_list, value=stable_paint_model_list[0], label="Text-Image Model Id"
|
96 |
+
)
|
97 |
+
|
98 |
+
text2image_out_prompt = gr.Textbox(lines=2, value=stable_paint_prompt_list[0], label="Prompt")
|
99 |
+
|
100 |
+
text2image_out_negative_prompt = gr.Textbox(
|
101 |
+
lines=1, value=stable_paint_negative_prompt_list[0], label="Negative Prompt"
|
102 |
+
)
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column():
|
106 |
+
text2image_out_guidance_scale = gr.Slider(
|
107 |
+
minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale"
|
108 |
+
)
|
109 |
+
|
110 |
+
text2image_out_num_inference_step = gr.Slider(
|
111 |
+
minimum=1, maximum=100, step=1, value=50, label="Num Inference Step"
|
112 |
+
)
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Column():
|
115 |
+
text2image_out_step_size = gr.Slider(
|
116 |
+
minimum=1, maximum=100, step=1, value=10, label="Step Size"
|
117 |
+
)
|
118 |
+
|
119 |
+
text2image_out_num_frames = gr.Slider(
|
120 |
+
minimum=1, maximum=100, step=1, value=10, label="Frames"
|
121 |
+
)
|
122 |
+
|
123 |
+
text2image_out_predict = gr.Button(value="Generator")
|
124 |
+
|
125 |
+
with gr.Column():
|
126 |
+
output_image = gr.Video(label="Output")
|
127 |
+
|
128 |
+
text2image_out_predict.click(
|
129 |
+
fn=StableDiffusionZoomOut().generate_video,
|
130 |
+
inputs=[
|
131 |
+
text2image_out_model_path,
|
132 |
+
text2image_out_prompt,
|
133 |
+
text2image_out_negative_prompt,
|
134 |
+
text2image_out_guidance_scale,
|
135 |
+
text2image_out_num_inference_step,
|
136 |
+
text2image_out_step_size,
|
137 |
+
text2image_out_num_frames,
|
138 |
+
],
|
139 |
+
outputs=output_image,
|
140 |
+
)
|
video_diffusion/stable_diffusion_video/__init__.py
ADDED
File without changes
|
video_diffusion/stable_diffusion_video/image_generation.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
import time
|
5 |
+
from pathlib import Path
|
6 |
+
from uuid import uuid4
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from diffusers import __version__ as diffusers_version
|
10 |
+
from huggingface_hub import CommitOperationAdd, create_commit, create_repo
|
11 |
+
|
12 |
+
from .upsampling import RealESRGANModel
|
13 |
+
from .utils import pad_along_axis
|
14 |
+
|
15 |
+
|
16 |
+
def get_all_files(root: Path):
|
17 |
+
dirs = [root]
|
18 |
+
while len(dirs) > 0:
|
19 |
+
dir = dirs.pop()
|
20 |
+
for candidate in dir.iterdir():
|
21 |
+
if candidate.is_file():
|
22 |
+
yield candidate
|
23 |
+
if candidate.is_dir():
|
24 |
+
dirs.append(candidate)
|
25 |
+
|
26 |
+
|
27 |
+
def get_groups_of_n(n: int, iterator):
|
28 |
+
assert n > 1
|
29 |
+
buffer = []
|
30 |
+
for elt in iterator:
|
31 |
+
if len(buffer) == n:
|
32 |
+
yield buffer
|
33 |
+
buffer = []
|
34 |
+
buffer.append(elt)
|
35 |
+
if len(buffer) != 0:
|
36 |
+
yield buffer
|
37 |
+
|
38 |
+
|
39 |
+
def upload_folder_chunked(
|
40 |
+
repo_id: str,
|
41 |
+
upload_dir: Path,
|
42 |
+
n: int = 100,
|
43 |
+
private: bool = False,
|
44 |
+
create_pr: bool = False,
|
45 |
+
):
|
46 |
+
"""Upload a folder to the Hugging Face Hub in chunks of n files at a time.
|
47 |
+
Args:
|
48 |
+
repo_id (str): The repo id to upload to.
|
49 |
+
upload_dir (Path): The directory to upload.
|
50 |
+
n (int, *optional*, defaults to 100): The number of files to upload at a time.
|
51 |
+
private (bool, *optional*): Whether to upload the repo as private.
|
52 |
+
create_pr (bool, *optional*): Whether to create a PR after uploading instead of commiting directly.
|
53 |
+
"""
|
54 |
+
|
55 |
+
url = create_repo(repo_id, exist_ok=True, private=private, repo_type="dataset")
|
56 |
+
print(f"Uploading files to: {url}")
|
57 |
+
|
58 |
+
root = Path(upload_dir)
|
59 |
+
if not root.exists():
|
60 |
+
raise ValueError(f"Upload directory {root} does not exist.")
|
61 |
+
|
62 |
+
for i, file_paths in enumerate(get_groups_of_n(n, get_all_files(root))):
|
63 |
+
print(f"Committing {file_paths}")
|
64 |
+
operations = [
|
65 |
+
CommitOperationAdd(
|
66 |
+
path_in_repo=f"{file_path.parent.name}/{file_path.name}",
|
67 |
+
path_or_fileobj=str(file_path),
|
68 |
+
)
|
69 |
+
for file_path in file_paths
|
70 |
+
]
|
71 |
+
create_commit(
|
72 |
+
repo_id=repo_id,
|
73 |
+
operations=operations,
|
74 |
+
commit_message=f"Upload part {i}",
|
75 |
+
repo_type="dataset",
|
76 |
+
create_pr=create_pr,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
def generate_input_batches(pipeline, prompts, seeds, batch_size, height, width):
|
81 |
+
if len(prompts) != len(seeds):
|
82 |
+
raise ValueError("Number of prompts and seeds must be equal.")
|
83 |
+
|
84 |
+
embeds_batch, noise_batch = None, None
|
85 |
+
batch_idx = 0
|
86 |
+
for i, (prompt, seed) in enumerate(zip(prompts, seeds)):
|
87 |
+
embeds = pipeline.embed_text(prompt)
|
88 |
+
noise = torch.randn(
|
89 |
+
(1, pipeline.unet.in_channels, height // 8, width // 8),
|
90 |
+
device=pipeline.device,
|
91 |
+
generator=torch.Generator(device="cpu" if pipeline.device.type == "mps" else pipeline.device).manual_seed(
|
92 |
+
seed
|
93 |
+
),
|
94 |
+
)
|
95 |
+
embeds_batch = embeds if embeds_batch is None else torch.cat([embeds_batch, embeds])
|
96 |
+
noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise])
|
97 |
+
batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == len(prompts)
|
98 |
+
if not batch_is_ready:
|
99 |
+
continue
|
100 |
+
yield batch_idx, embeds_batch.type(torch.cuda.HalfTensor), noise_batch.type(torch.cuda.HalfTensor)
|
101 |
+
batch_idx += 1
|
102 |
+
del embeds_batch, noise_batch
|
103 |
+
torch.cuda.empty_cache()
|
104 |
+
embeds_batch, noise_batch = None, None
|
105 |
+
|
106 |
+
|
107 |
+
def generate_images(
|
108 |
+
pipeline,
|
109 |
+
prompt,
|
110 |
+
batch_size=1,
|
111 |
+
num_batches=1,
|
112 |
+
seeds=None,
|
113 |
+
num_inference_steps=50,
|
114 |
+
guidance_scale=7.5,
|
115 |
+
output_dir="./images",
|
116 |
+
image_file_ext=".jpg",
|
117 |
+
upsample=False,
|
118 |
+
height=512,
|
119 |
+
width=512,
|
120 |
+
eta=0.0,
|
121 |
+
push_to_hub=False,
|
122 |
+
repo_id=None,
|
123 |
+
private=False,
|
124 |
+
create_pr=False,
|
125 |
+
name=None,
|
126 |
+
):
|
127 |
+
"""Generate images using the StableDiffusion pipeline.
|
128 |
+
Args:
|
129 |
+
pipeline (StableDiffusionWalkPipeline): The StableDiffusion pipeline instance.
|
130 |
+
prompt (str): The prompt to use for the image generation.
|
131 |
+
batch_size (int, *optional*, defaults to 1): The batch size to use for image generation.
|
132 |
+
num_batches (int, *optional*, defaults to 1): The number of batches to generate.
|
133 |
+
seeds (list[int], *optional*): The seeds to use for the image generation.
|
134 |
+
num_inference_steps (int, *optional*, defaults to 50): The number of inference steps to take.
|
135 |
+
guidance_scale (float, *optional*, defaults to 7.5): The guidance scale to use for image generation.
|
136 |
+
output_dir (str, *optional*, defaults to "./images"): The output directory to save the images to.
|
137 |
+
image_file_ext (str, *optional*, defaults to '.jpg'): The image file extension to use.
|
138 |
+
upsample (bool, *optional*, defaults to False): Whether to upsample the images.
|
139 |
+
height (int, *optional*, defaults to 512): The height of the images to generate.
|
140 |
+
width (int, *optional*, defaults to 512): The width of the images to generate.
|
141 |
+
eta (float, *optional*, defaults to 0.0): The eta parameter to use for image generation.
|
142 |
+
push_to_hub (bool, *optional*, defaults to False): Whether to push the generated images to the Hugging Face Hub.
|
143 |
+
repo_id (str, *optional*): The repo id to push the images to.
|
144 |
+
private (bool, *optional*): Whether to push the repo as private.
|
145 |
+
create_pr (bool, *optional*): Whether to create a PR after pushing instead of commiting directly.
|
146 |
+
name (str, *optional*, defaults to current timestamp str): The name of the sub-directory of
|
147 |
+
output_dir to save the images to.
|
148 |
+
"""
|
149 |
+
if push_to_hub:
|
150 |
+
if repo_id is None:
|
151 |
+
raise ValueError("Must provide repo_id if push_to_hub is True.")
|
152 |
+
|
153 |
+
name = name or time.strftime("%Y%m%d-%H%M%S")
|
154 |
+
save_path = Path(output_dir) / name
|
155 |
+
save_path.mkdir(exist_ok=False, parents=True)
|
156 |
+
prompt_config_path = save_path / "prompt_config.json"
|
157 |
+
|
158 |
+
num_images = batch_size * num_batches
|
159 |
+
seeds = seeds or [random.choice(list(range(0, 9999999))) for _ in range(num_images)]
|
160 |
+
if len(seeds) != num_images:
|
161 |
+
raise ValueError("Number of seeds must be equal to batch_size * num_batches.")
|
162 |
+
|
163 |
+
if upsample:
|
164 |
+
if getattr(pipeline, "upsampler", None) is None:
|
165 |
+
pipeline.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan")
|
166 |
+
pipeline.upsampler.to(pipeline.device)
|
167 |
+
|
168 |
+
cfg = dict(
|
169 |
+
prompt=prompt,
|
170 |
+
guidance_scale=guidance_scale,
|
171 |
+
eta=eta,
|
172 |
+
num_inference_steps=num_inference_steps,
|
173 |
+
upsample=upsample,
|
174 |
+
height=height,
|
175 |
+
width=width,
|
176 |
+
scheduler=dict(pipeline.scheduler.config),
|
177 |
+
tiled=pipeline.tiled,
|
178 |
+
diffusers_version=diffusers_version,
|
179 |
+
device_name=torch.cuda.get_device_name(0) if torch.cuda.is_available() else "unknown",
|
180 |
+
)
|
181 |
+
prompt_config_path.write_text(json.dumps(cfg, indent=2, sort_keys=False))
|
182 |
+
|
183 |
+
frame_index = 0
|
184 |
+
frame_filepaths = []
|
185 |
+
for batch_idx, embeds, noise in generate_input_batches(
|
186 |
+
pipeline, [prompt] * num_images, seeds, batch_size, height, width
|
187 |
+
):
|
188 |
+
print(f"Generating batch {batch_idx}")
|
189 |
+
|
190 |
+
outputs = pipeline(
|
191 |
+
text_embeddings=embeds,
|
192 |
+
latents=noise,
|
193 |
+
num_inference_steps=num_inference_steps,
|
194 |
+
guidance_scale=guidance_scale,
|
195 |
+
eta=eta,
|
196 |
+
height=height,
|
197 |
+
width=width,
|
198 |
+
output_type="pil" if not upsample else "numpy",
|
199 |
+
)["images"]
|
200 |
+
if upsample:
|
201 |
+
images = []
|
202 |
+
for output in outputs:
|
203 |
+
images.append(pipeline.upsampler(output))
|
204 |
+
else:
|
205 |
+
images = outputs
|
206 |
+
|
207 |
+
for image in images:
|
208 |
+
frame_filepath = save_path / f"{seeds[frame_index]}{image_file_ext}"
|
209 |
+
image.save(frame_filepath)
|
210 |
+
frame_filepaths.append(str(frame_filepath))
|
211 |
+
frame_index += 1
|
212 |
+
|
213 |
+
return frame_filepaths
|
214 |
+
|
215 |
+
if push_to_hub:
|
216 |
+
upload_folder_chunked(repo_id, save_path, private=private, create_pr=create_pr)
|
217 |
+
|
218 |
+
|
219 |
+
def generate_images_flax(
|
220 |
+
pipeline,
|
221 |
+
params,
|
222 |
+
prompt,
|
223 |
+
batch_size=1,
|
224 |
+
num_batches=1,
|
225 |
+
seeds=None,
|
226 |
+
num_inference_steps=50,
|
227 |
+
guidance_scale=7.5,
|
228 |
+
output_dir="./images",
|
229 |
+
image_file_ext=".jpg",
|
230 |
+
upsample=False,
|
231 |
+
height=512,
|
232 |
+
width=512,
|
233 |
+
push_to_hub=False,
|
234 |
+
repo_id=None,
|
235 |
+
private=False,
|
236 |
+
create_pr=False,
|
237 |
+
name=None,
|
238 |
+
):
|
239 |
+
import jax
|
240 |
+
from flax.training.common_utils import shard
|
241 |
+
|
242 |
+
"""Generate images using the StableDiffusion pipeline.
|
243 |
+
Args:
|
244 |
+
pipeline (StableDiffusionWalkPipeline): The StableDiffusion pipeline instance.
|
245 |
+
params (`Union[Dict, FrozenDict]`): The model parameters.
|
246 |
+
prompt (str): The prompt to use for the image generation.
|
247 |
+
batch_size (int, *optional*, defaults to 1): The batch size to use for image generation.
|
248 |
+
num_batches (int, *optional*, defaults to 1): The number of batches to generate.
|
249 |
+
seeds (int, *optional*): The seed to use for the image generation.
|
250 |
+
num_inference_steps (int, *optional*, defaults to 50): The number of inference steps to take.
|
251 |
+
guidance_scale (float, *optional*, defaults to 7.5): The guidance scale to use for image generation.
|
252 |
+
output_dir (str, *optional*, defaults to "./images"): The output directory to save the images to.
|
253 |
+
image_file_ext (str, *optional*, defaults to '.jpg'): The image file extension to use.
|
254 |
+
upsample (bool, *optional*, defaults to False): Whether to upsample the images.
|
255 |
+
height (int, *optional*, defaults to 512): The height of the images to generate.
|
256 |
+
width (int, *optional*, defaults to 512): The width of the images to generate.
|
257 |
+
push_to_hub (bool, *optional*, defaults to False): Whether to push the generated images to the Hugging Face Hub.
|
258 |
+
repo_id (str, *optional*): The repo id to push the images to.
|
259 |
+
private (bool, *optional*): Whether to push the repo as private.
|
260 |
+
create_pr (bool, *optional*): Whether to create a PR after pushing instead of commiting directly.
|
261 |
+
name (str, *optional*, defaults to current timestamp str): The name of the sub-directory of
|
262 |
+
output_dir to save the images to.
|
263 |
+
"""
|
264 |
+
if push_to_hub:
|
265 |
+
if repo_id is None:
|
266 |
+
raise ValueError("Must provide repo_id if push_to_hub is True.")
|
267 |
+
|
268 |
+
name = name or time.strftime("%Y%m%d-%H%M%S")
|
269 |
+
save_path = Path(output_dir) / name
|
270 |
+
save_path.mkdir(exist_ok=False, parents=True)
|
271 |
+
prompt_config_path = save_path / "prompt_config.json"
|
272 |
+
|
273 |
+
num_images = batch_size * num_batches
|
274 |
+
seeds = seeds or random.choice(list(range(0, 9999999)))
|
275 |
+
prng_seed = jax.random.PRNGKey(seeds)
|
276 |
+
|
277 |
+
if upsample:
|
278 |
+
if getattr(pipeline, "upsampler", None) is None:
|
279 |
+
pipeline.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan")
|
280 |
+
if not torch.cuda.is_available():
|
281 |
+
print("Upsampling is recommended to be done on a GPU, as it is very slow on CPU")
|
282 |
+
else:
|
283 |
+
pipeline.upsampler = pipeline.upsampler.cuda()
|
284 |
+
|
285 |
+
cfg = dict(
|
286 |
+
prompt=prompt,
|
287 |
+
guidance_scale=guidance_scale,
|
288 |
+
num_inference_steps=num_inference_steps,
|
289 |
+
upsample=upsample,
|
290 |
+
height=height,
|
291 |
+
width=width,
|
292 |
+
scheduler=dict(pipeline.scheduler.config),
|
293 |
+
# tiled=pipeline.tiled,
|
294 |
+
diffusers_version=diffusers_version,
|
295 |
+
device_name=torch.cuda.get_device_name(0) if torch.cuda.is_available() else "unknown",
|
296 |
+
)
|
297 |
+
prompt_config_path.write_text(json.dumps(cfg, indent=2, sort_keys=False))
|
298 |
+
|
299 |
+
NUM_TPU_CORES = jax.device_count()
|
300 |
+
jit = True # force jit, assume params are already sharded
|
301 |
+
batch_size_total = NUM_TPU_CORES * batch_size if jit else batch_size
|
302 |
+
|
303 |
+
def generate_input_batches(prompts, batch_size):
|
304 |
+
prompt_batch = None
|
305 |
+
for batch_idx in range(math.ceil(len(prompts) / batch_size)):
|
306 |
+
prompt_batch = prompts[batch_idx * batch_size : (batch_idx + 1) * batch_size]
|
307 |
+
yield batch_idx, prompt_batch
|
308 |
+
|
309 |
+
frame_index = 0
|
310 |
+
frame_filepaths = []
|
311 |
+
for batch_idx, prompt_batch in generate_input_batches([prompt] * num_images, batch_size_total):
|
312 |
+
# This batch size correspond to each TPU core, so we are generating batch_size * NUM_TPU_CORES images
|
313 |
+
print(f"Generating batches: {batch_idx*NUM_TPU_CORES} - {min((batch_idx+1)*NUM_TPU_CORES, num_batches)}")
|
314 |
+
prompt_ids_batch = pipeline.prepare_inputs(prompt_batch)
|
315 |
+
prng_seed_batch = prng_seed
|
316 |
+
|
317 |
+
if jit:
|
318 |
+
padded = False
|
319 |
+
# Check if len of prompt_batch is multiple of NUM_TPU_CORES, if not pad its ids
|
320 |
+
if len(prompt_batch) % NUM_TPU_CORES != 0:
|
321 |
+
padded = True
|
322 |
+
pad_size = NUM_TPU_CORES - (len(prompt_batch) % NUM_TPU_CORES)
|
323 |
+
# Pad embeds_batch and noise_batch with zeros in batch dimension
|
324 |
+
prompt_ids_batch = pad_along_axis(prompt_ids_batch, pad_size, axis=0)
|
325 |
+
|
326 |
+
prompt_ids_batch = shard(prompt_ids_batch)
|
327 |
+
prng_seed_batch = jax.random.split(prng_seed, jax.device_count())
|
328 |
+
|
329 |
+
outputs = pipeline(
|
330 |
+
params,
|
331 |
+
prng_seed=prng_seed_batch,
|
332 |
+
prompt_ids=prompt_ids_batch,
|
333 |
+
height=height,
|
334 |
+
width=width,
|
335 |
+
guidance_scale=guidance_scale,
|
336 |
+
num_inference_steps=num_inference_steps,
|
337 |
+
output_type="pil" if not upsample else "numpy",
|
338 |
+
jit=jit,
|
339 |
+
)["images"]
|
340 |
+
|
341 |
+
if jit:
|
342 |
+
# check if we padded and remove that padding from outputs
|
343 |
+
if padded:
|
344 |
+
outputs = outputs[:-pad_size]
|
345 |
+
|
346 |
+
if upsample:
|
347 |
+
images = []
|
348 |
+
for output in outputs:
|
349 |
+
images.append(pipeline.upsampler(output))
|
350 |
+
else:
|
351 |
+
images = outputs
|
352 |
+
|
353 |
+
for image in images:
|
354 |
+
uuid = str(uuid4())
|
355 |
+
frame_filepath = save_path / f"{uuid}{image_file_ext}"
|
356 |
+
image.save(frame_filepath)
|
357 |
+
frame_filepaths.append(str(frame_filepath))
|
358 |
+
frame_index += 1
|
359 |
+
|
360 |
+
return frame_filepaths
|
361 |
+
|
362 |
+
if push_to_hub:
|
363 |
+
upload_folder_chunked(repo_id, save_path, private=private, create_pr=create_pr)
|
video_diffusion/stable_diffusion_video/stable_diffusion_pipeline.py
ADDED
@@ -0,0 +1,848 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Callable, List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from diffusers.configuration_utils import FrozenDict
|
11 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
13 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
14 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
15 |
+
from diffusers.schedulers import (
|
16 |
+
DDIMScheduler,
|
17 |
+
DPMSolverMultistepScheduler,
|
18 |
+
EulerAncestralDiscreteScheduler,
|
19 |
+
EulerDiscreteScheduler,
|
20 |
+
LMSDiscreteScheduler,
|
21 |
+
PNDMScheduler,
|
22 |
+
)
|
23 |
+
from diffusers.utils import deprecate, logging
|
24 |
+
from packaging import version
|
25 |
+
from torch import nn
|
26 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
27 |
+
|
28 |
+
from .upsampling import RealESRGANModel
|
29 |
+
from .utils import get_timesteps_arr, make_video_pyav, slerp
|
30 |
+
|
31 |
+
logging.set_verbosity_info()
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class StableDiffusionWalkPipeline(DiffusionPipeline):
|
36 |
+
r"""
|
37 |
+
Pipeline for generating videos by interpolating Stable Diffusion's latent space.
|
38 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
39 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
40 |
+
Args:
|
41 |
+
vae ([`AutoencoderKL`]):
|
42 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
43 |
+
text_encoder ([`CLIPTextModel`]):
|
44 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
45 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
46 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
47 |
+
tokenizer (`CLIPTokenizer`):
|
48 |
+
Tokenizer of class
|
49 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
50 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
51 |
+
scheduler ([`SchedulerMixin`]):
|
52 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
53 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
54 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
55 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
56 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
57 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
58 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
59 |
+
"""
|
60 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vae: AutoencoderKL,
|
65 |
+
text_encoder: CLIPTextModel,
|
66 |
+
tokenizer: CLIPTokenizer,
|
67 |
+
unet: UNet2DConditionModel,
|
68 |
+
scheduler: Union[
|
69 |
+
DDIMScheduler,
|
70 |
+
PNDMScheduler,
|
71 |
+
LMSDiscreteScheduler,
|
72 |
+
EulerDiscreteScheduler,
|
73 |
+
EulerAncestralDiscreteScheduler,
|
74 |
+
DPMSolverMultistepScheduler,
|
75 |
+
],
|
76 |
+
safety_checker: StableDiffusionSafetyChecker,
|
77 |
+
feature_extractor: CLIPFeatureExtractor,
|
78 |
+
requires_safety_checker: bool = True,
|
79 |
+
):
|
80 |
+
super().__init__()
|
81 |
+
|
82 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
83 |
+
deprecation_message = (
|
84 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
85 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
86 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
87 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
88 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
89 |
+
" file"
|
90 |
+
)
|
91 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
92 |
+
new_config = dict(scheduler.config)
|
93 |
+
new_config["steps_offset"] = 1
|
94 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
95 |
+
|
96 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
97 |
+
deprecation_message = (
|
98 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
99 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
100 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
101 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
102 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
103 |
+
)
|
104 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
105 |
+
new_config = dict(scheduler.config)
|
106 |
+
new_config["clip_sample"] = False
|
107 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
108 |
+
|
109 |
+
if safety_checker is None and requires_safety_checker:
|
110 |
+
logger.warning(
|
111 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
112 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
113 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
114 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
115 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
116 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
117 |
+
)
|
118 |
+
|
119 |
+
if safety_checker is not None and feature_extractor is None:
|
120 |
+
raise ValueError(
|
121 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
122 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
123 |
+
)
|
124 |
+
|
125 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
126 |
+
version.parse(unet.config._diffusers_version).base_version
|
127 |
+
) < version.parse("0.9.0.dev0")
|
128 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
129 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
130 |
+
deprecation_message = (
|
131 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
132 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
133 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
134 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
135 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
136 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
137 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
138 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
139 |
+
" the `unet/config.json` file"
|
140 |
+
)
|
141 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
142 |
+
new_config = dict(unet.config)
|
143 |
+
new_config["sample_size"] = 64
|
144 |
+
unet._internal_dict = FrozenDict(new_config)
|
145 |
+
|
146 |
+
self.register_modules(
|
147 |
+
vae=vae,
|
148 |
+
text_encoder=text_encoder,
|
149 |
+
tokenizer=tokenizer,
|
150 |
+
unet=unet,
|
151 |
+
scheduler=scheduler,
|
152 |
+
safety_checker=safety_checker,
|
153 |
+
feature_extractor=feature_extractor,
|
154 |
+
)
|
155 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
156 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
157 |
+
|
158 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
159 |
+
r"""
|
160 |
+
Enable sliced attention computation.
|
161 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
162 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
163 |
+
Args:
|
164 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
165 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
166 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
167 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
168 |
+
"""
|
169 |
+
if slice_size == "auto":
|
170 |
+
if isinstance(self.unet.config.attention_head_dim, int):
|
171 |
+
# half the attention head size is usually a good trade-off between
|
172 |
+
# speed and memory
|
173 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
174 |
+
else:
|
175 |
+
# if `attention_head_dim` is a list, take the smallest head size
|
176 |
+
slice_size = min(self.unet.config.attention_head_dim)
|
177 |
+
|
178 |
+
self.unet.set_attention_slice(slice_size)
|
179 |
+
|
180 |
+
def disable_attention_slicing(self):
|
181 |
+
r"""
|
182 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
183 |
+
back to computing attention in one step.
|
184 |
+
"""
|
185 |
+
# set slice_size = `None` to disable `attention slicing`
|
186 |
+
self.enable_attention_slicing(None)
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def __call__(
|
190 |
+
self,
|
191 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
192 |
+
height: Optional[int] = None,
|
193 |
+
width: Optional[int] = None,
|
194 |
+
num_inference_steps: int = 50,
|
195 |
+
guidance_scale: float = 7.5,
|
196 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
197 |
+
num_images_per_prompt: Optional[int] = 1,
|
198 |
+
eta: float = 0.0,
|
199 |
+
generator: Optional[torch.Generator] = None,
|
200 |
+
latents: Optional[torch.FloatTensor] = None,
|
201 |
+
output_type: Optional[str] = "pil",
|
202 |
+
return_dict: bool = True,
|
203 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
204 |
+
callback_steps: Optional[int] = 1,
|
205 |
+
text_embeddings: Optional[torch.FloatTensor] = None,
|
206 |
+
**kwargs,
|
207 |
+
):
|
208 |
+
r"""
|
209 |
+
Function invoked when calling the pipeline for generation.
|
210 |
+
Args:
|
211 |
+
prompt (`str` or `List[str]`, *optional*, defaults to `None`):
|
212 |
+
The prompt or prompts to guide the image generation. If not provided, `text_embeddings` is required.
|
213 |
+
height (`int`, *optional*, defaults to 512):
|
214 |
+
The height in pixels of the generated image.
|
215 |
+
width (`int`, *optional*, defaults to 512):
|
216 |
+
The width in pixels of the generated image.
|
217 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
218 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
219 |
+
expense of slower inference.
|
220 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
221 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
222 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
223 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
224 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
225 |
+
usually at the expense of lower image quality.
|
226 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
227 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
228 |
+
if `guidance_scale` is less than `1`).
|
229 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
230 |
+
The number of images to generate per prompt.
|
231 |
+
eta (`float`, *optional*, defaults to 0.0):
|
232 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
233 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
234 |
+
generator (`torch.Generator`, *optional*):
|
235 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
236 |
+
deterministic.
|
237 |
+
latents (`torch.FloatTensor`, *optional*):
|
238 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
239 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
240 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
241 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
242 |
+
The output format of the generate image. Choose between
|
243 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
244 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
245 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
246 |
+
plain tuple.
|
247 |
+
callback (`Callable`, *optional*):
|
248 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
249 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
250 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
251 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
252 |
+
called at every step.
|
253 |
+
text_embeddings (`torch.FloatTensor`, *optional*, defaults to `None`):
|
254 |
+
Pre-generated text embeddings to be used as inputs for image generation. Can be used in place of
|
255 |
+
`prompt` to avoid re-computing the embeddings. If not provided, the embeddings will be generated from
|
256 |
+
the supplied `prompt`.
|
257 |
+
Returns:
|
258 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
259 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
260 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
261 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
262 |
+
(nsfw) content, according to the `safety_checker`.
|
263 |
+
"""
|
264 |
+
# 0. Default height and width to unet
|
265 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
266 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
267 |
+
|
268 |
+
if height % 8 != 0 or width % 8 != 0:
|
269 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
270 |
+
|
271 |
+
if (callback_steps is None) or (
|
272 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
273 |
+
):
|
274 |
+
raise ValueError(
|
275 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
276 |
+
f" {type(callback_steps)}."
|
277 |
+
)
|
278 |
+
|
279 |
+
if text_embeddings is None:
|
280 |
+
if isinstance(prompt, str):
|
281 |
+
batch_size = 1
|
282 |
+
elif isinstance(prompt, list):
|
283 |
+
batch_size = len(prompt)
|
284 |
+
else:
|
285 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
286 |
+
|
287 |
+
# get prompt text embeddings
|
288 |
+
text_inputs = self.tokenizer(
|
289 |
+
prompt,
|
290 |
+
padding="max_length",
|
291 |
+
max_length=self.tokenizer.model_max_length,
|
292 |
+
return_tensors="pt",
|
293 |
+
)
|
294 |
+
text_input_ids = text_inputs.input_ids
|
295 |
+
|
296 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
297 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
298 |
+
print(
|
299 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
300 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
301 |
+
)
|
302 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
303 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
304 |
+
else:
|
305 |
+
batch_size = text_embeddings.shape[0]
|
306 |
+
|
307 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
308 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
309 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
310 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
311 |
+
|
312 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
313 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
314 |
+
# corresponds to doing no classifier free guidance.
|
315 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
316 |
+
# get unconditional embeddings for classifier free guidance
|
317 |
+
if do_classifier_free_guidance:
|
318 |
+
uncond_tokens: List[str]
|
319 |
+
if negative_prompt is None:
|
320 |
+
uncond_tokens = [""]
|
321 |
+
elif text_embeddings is None and type(prompt) is not type(negative_prompt):
|
322 |
+
raise TypeError(
|
323 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
324 |
+
f" {type(prompt)}."
|
325 |
+
)
|
326 |
+
elif isinstance(negative_prompt, str):
|
327 |
+
uncond_tokens = [negative_prompt]
|
328 |
+
elif batch_size != len(negative_prompt):
|
329 |
+
raise ValueError(
|
330 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
331 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
332 |
+
" the batch size of `prompt`."
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
uncond_tokens = negative_prompt
|
336 |
+
|
337 |
+
max_length = self.tokenizer.model_max_length
|
338 |
+
uncond_input = self.tokenizer(
|
339 |
+
uncond_tokens,
|
340 |
+
padding="max_length",
|
341 |
+
max_length=max_length,
|
342 |
+
truncation=True,
|
343 |
+
return_tensors="pt",
|
344 |
+
)
|
345 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
346 |
+
|
347 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
348 |
+
seq_len = uncond_embeddings.shape[1]
|
349 |
+
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
|
350 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
351 |
+
|
352 |
+
# For classifier free guidance, we need to do two forward passes.
|
353 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
354 |
+
# to avoid doing two forward passes
|
355 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
356 |
+
|
357 |
+
# get the initial random noise unless the user supplied it
|
358 |
+
|
359 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
360 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
361 |
+
# However this currently doesn't work in `mps`.
|
362 |
+
latents_shape = (
|
363 |
+
batch_size * num_images_per_prompt,
|
364 |
+
self.unet.in_channels,
|
365 |
+
height // 8,
|
366 |
+
width // 8,
|
367 |
+
)
|
368 |
+
latents_dtype = text_embeddings.dtype
|
369 |
+
if latents is None:
|
370 |
+
if self.device.type == "mps":
|
371 |
+
# randn does not exist on mps
|
372 |
+
latents = torch.randn(
|
373 |
+
latents_shape,
|
374 |
+
generator=generator,
|
375 |
+
device="cpu",
|
376 |
+
dtype=latents_dtype,
|
377 |
+
).to(self.device)
|
378 |
+
else:
|
379 |
+
latents = torch.randn(
|
380 |
+
latents_shape,
|
381 |
+
generator=generator,
|
382 |
+
device=self.device,
|
383 |
+
dtype=latents_dtype,
|
384 |
+
)
|
385 |
+
else:
|
386 |
+
if latents.shape != latents_shape:
|
387 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
388 |
+
latents = latents.to(self.device)
|
389 |
+
|
390 |
+
# set timesteps
|
391 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
392 |
+
|
393 |
+
# Some schedulers like PNDM have timesteps as arrays
|
394 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
395 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
396 |
+
|
397 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
398 |
+
latents = latents * self.scheduler.init_noise_sigma
|
399 |
+
|
400 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
401 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
402 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
403 |
+
# and should be between [0, 1]
|
404 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
405 |
+
extra_step_kwargs = {}
|
406 |
+
if accepts_eta:
|
407 |
+
extra_step_kwargs["eta"] = eta
|
408 |
+
|
409 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
410 |
+
# expand the latents if we are doing classifier free guidance
|
411 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
412 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
413 |
+
|
414 |
+
# predict the noise residual
|
415 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
416 |
+
|
417 |
+
# perform guidance
|
418 |
+
if do_classifier_free_guidance:
|
419 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
420 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
421 |
+
|
422 |
+
# compute the previous noisy sample x_t -> x_t-1
|
423 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
424 |
+
|
425 |
+
# call the callback, if provided
|
426 |
+
if callback is not None and i % callback_steps == 0:
|
427 |
+
callback(i, t, latents)
|
428 |
+
|
429 |
+
latents = 1 / 0.18215 * latents
|
430 |
+
image = self.vae.decode(latents).sample
|
431 |
+
|
432 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
433 |
+
|
434 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
435 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
436 |
+
|
437 |
+
if self.safety_checker is not None:
|
438 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
|
439 |
+
image, has_nsfw_concept = self.safety_checker(
|
440 |
+
images=image,
|
441 |
+
clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype),
|
442 |
+
)
|
443 |
+
else:
|
444 |
+
has_nsfw_concept = None
|
445 |
+
|
446 |
+
if output_type == "pil":
|
447 |
+
image = self.numpy_to_pil(image)
|
448 |
+
|
449 |
+
if not return_dict:
|
450 |
+
return (image, has_nsfw_concept)
|
451 |
+
|
452 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
453 |
+
|
454 |
+
def generate_inputs(self, prompt_a, prompt_b, seed_a, seed_b, noise_shape, T, batch_size):
|
455 |
+
embeds_a = self.embed_text(prompt_a)
|
456 |
+
embeds_b = self.embed_text(prompt_b)
|
457 |
+
latents_dtype = embeds_a.dtype
|
458 |
+
latents_a = self.init_noise(seed_a, noise_shape, latents_dtype)
|
459 |
+
latents_b = self.init_noise(seed_b, noise_shape, latents_dtype)
|
460 |
+
|
461 |
+
batch_idx = 0
|
462 |
+
embeds_batch, noise_batch = None, None
|
463 |
+
for i, t in enumerate(T):
|
464 |
+
embeds = torch.lerp(embeds_a, embeds_b, t)
|
465 |
+
noise = slerp(float(t), latents_a, latents_b)
|
466 |
+
|
467 |
+
embeds_batch = embeds if embeds_batch is None else torch.cat([embeds_batch, embeds])
|
468 |
+
noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise])
|
469 |
+
batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == T.shape[0]
|
470 |
+
if not batch_is_ready:
|
471 |
+
continue
|
472 |
+
yield batch_idx, embeds_batch, noise_batch
|
473 |
+
batch_idx += 1
|
474 |
+
del embeds_batch, noise_batch
|
475 |
+
torch.cuda.empty_cache()
|
476 |
+
embeds_batch, noise_batch = None, None
|
477 |
+
|
478 |
+
def make_clip_frames(
|
479 |
+
self,
|
480 |
+
prompt_a: str,
|
481 |
+
prompt_b: str,
|
482 |
+
seed_a: int,
|
483 |
+
seed_b: int,
|
484 |
+
num_interpolation_steps: int = 5,
|
485 |
+
save_path: Union[str, Path] = "outputs/",
|
486 |
+
num_inference_steps: int = 50,
|
487 |
+
guidance_scale: float = 7.5,
|
488 |
+
eta: float = 0.0,
|
489 |
+
height: Optional[int] = None,
|
490 |
+
width: Optional[int] = None,
|
491 |
+
upsample: bool = False,
|
492 |
+
batch_size: int = 1,
|
493 |
+
image_file_ext: str = ".png",
|
494 |
+
T: np.ndarray = None,
|
495 |
+
skip: int = 0,
|
496 |
+
negative_prompt: str = None,
|
497 |
+
step: Optional[Tuple[int, int]] = None,
|
498 |
+
):
|
499 |
+
# 0. Default height and width to unet
|
500 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
501 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
502 |
+
|
503 |
+
save_path = Path(save_path)
|
504 |
+
save_path.mkdir(parents=True, exist_ok=True)
|
505 |
+
|
506 |
+
T = T if T is not None else np.linspace(0.0, 1.0, num_interpolation_steps)
|
507 |
+
if T.shape[0] != num_interpolation_steps:
|
508 |
+
raise ValueError(f"Unexpected T shape, got {T.shape}, expected dim 0 to be {num_interpolation_steps}")
|
509 |
+
|
510 |
+
if upsample:
|
511 |
+
if getattr(self, "upsampler", None) is None:
|
512 |
+
self.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan")
|
513 |
+
self.upsampler.to(self.device)
|
514 |
+
|
515 |
+
batch_generator = self.generate_inputs(
|
516 |
+
prompt_a,
|
517 |
+
prompt_b,
|
518 |
+
seed_a,
|
519 |
+
seed_b,
|
520 |
+
(1, self.unet.in_channels, height // 8, width // 8),
|
521 |
+
T[skip:],
|
522 |
+
batch_size,
|
523 |
+
)
|
524 |
+
num_batches = math.ceil(num_interpolation_steps / batch_size)
|
525 |
+
|
526 |
+
log_prefix = "" if step is None else f"[{step[0]}/{step[1]}] "
|
527 |
+
|
528 |
+
frame_index = skip
|
529 |
+
for batch_idx, embeds_batch, noise_batch in batch_generator:
|
530 |
+
if batch_size == 1:
|
531 |
+
msg = f"Generating frame {frame_index}"
|
532 |
+
else:
|
533 |
+
msg = f"Generating frames {frame_index}-{frame_index+embeds_batch.shape[0]-1}"
|
534 |
+
logger.info(f"{log_prefix}[{batch_idx}/{num_batches}] {msg}")
|
535 |
+
outputs = self(
|
536 |
+
latents=noise_batch,
|
537 |
+
text_embeddings=embeds_batch,
|
538 |
+
height=height,
|
539 |
+
width=width,
|
540 |
+
guidance_scale=guidance_scale,
|
541 |
+
eta=eta,
|
542 |
+
num_inference_steps=num_inference_steps,
|
543 |
+
output_type="pil" if not upsample else "numpy",
|
544 |
+
negative_prompt=negative_prompt,
|
545 |
+
)["images"]
|
546 |
+
|
547 |
+
for image in outputs:
|
548 |
+
frame_filepath = save_path / (f"frame%06d{image_file_ext}" % frame_index)
|
549 |
+
image = image if not upsample else self.upsampler(image)
|
550 |
+
image.save(frame_filepath)
|
551 |
+
frame_index += 1
|
552 |
+
|
553 |
+
def walk(
|
554 |
+
self,
|
555 |
+
prompts: Optional[List[str]] = None,
|
556 |
+
seeds: Optional[List[int]] = None,
|
557 |
+
num_interpolation_steps: Optional[Union[int, List[int]]] = 5, # int or list of int
|
558 |
+
output_dir: Optional[str] = "./dreams",
|
559 |
+
name: Optional[str] = None,
|
560 |
+
image_file_ext: Optional[str] = ".png",
|
561 |
+
fps: Optional[int] = 30,
|
562 |
+
num_inference_steps: Optional[int] = 50,
|
563 |
+
guidance_scale: Optional[float] = 7.5,
|
564 |
+
eta: Optional[float] = 0.0,
|
565 |
+
height: Optional[int] = None,
|
566 |
+
width: Optional[int] = None,
|
567 |
+
upsample: Optional[bool] = False,
|
568 |
+
batch_size: Optional[int] = 1,
|
569 |
+
resume: Optional[bool] = False,
|
570 |
+
audio_filepath: str = None,
|
571 |
+
audio_start_sec: Optional[Union[int, float]] = None,
|
572 |
+
margin: Optional[float] = 1.0,
|
573 |
+
smooth: Optional[float] = 0.0,
|
574 |
+
negative_prompt: Optional[str] = None,
|
575 |
+
make_video: Optional[bool] = True,
|
576 |
+
):
|
577 |
+
"""Generate a video from a sequence of prompts and seeds. Optionally, add audio to the
|
578 |
+
video to interpolate to the intensity of the audio.
|
579 |
+
Args:
|
580 |
+
prompts (Optional[List[str]], optional):
|
581 |
+
list of text prompts. Defaults to None.
|
582 |
+
seeds (Optional[List[int]], optional):
|
583 |
+
list of random seeds corresponding to prompts. Defaults to None.
|
584 |
+
num_interpolation_steps (Union[int, List[int]], *optional*):
|
585 |
+
How many interpolation steps between each prompt. Defaults to None.
|
586 |
+
output_dir (Optional[str], optional):
|
587 |
+
Where to save the video. Defaults to './dreams'.
|
588 |
+
name (Optional[str], optional):
|
589 |
+
Name of the subdirectory of output_dir. Defaults to None.
|
590 |
+
image_file_ext (Optional[str], *optional*, defaults to '.png'):
|
591 |
+
The extension to use when writing video frames.
|
592 |
+
fps (Optional[int], *optional*, defaults to 30):
|
593 |
+
The frames per second in the resulting output videos.
|
594 |
+
num_inference_steps (Optional[int], *optional*, defaults to 50):
|
595 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
596 |
+
expense of slower inference.
|
597 |
+
guidance_scale (Optional[float], *optional*, defaults to 7.5):
|
598 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
599 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
600 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
601 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
602 |
+
usually at the expense of lower image quality.
|
603 |
+
eta (Optional[float], *optional*, defaults to 0.0):
|
604 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
605 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
606 |
+
height (Optional[int], *optional*, defaults to None):
|
607 |
+
height of the images to generate.
|
608 |
+
width (Optional[int], *optional*, defaults to None):
|
609 |
+
width of the images to generate.
|
610 |
+
upsample (Optional[bool], *optional*, defaults to False):
|
611 |
+
When True, upsamples images with realesrgan.
|
612 |
+
batch_size (Optional[int], *optional*, defaults to 1):
|
613 |
+
Number of images to generate at once.
|
614 |
+
resume (Optional[bool], *optional*, defaults to False):
|
615 |
+
When True, resumes from the last frame in the output directory based
|
616 |
+
on available prompt config. Requires you to provide the `name` argument.
|
617 |
+
audio_filepath (str, *optional*, defaults to None):
|
618 |
+
Optional path to an audio file to influence the interpolation rate.
|
619 |
+
audio_start_sec (Optional[Union[int, float]], *optional*, defaults to 0):
|
620 |
+
Global start time of the provided audio_filepath.
|
621 |
+
margin (Optional[float], *optional*, defaults to 1.0):
|
622 |
+
Margin from librosa hpss to use for audio interpolation.
|
623 |
+
smooth (Optional[float], *optional*, defaults to 0.0):
|
624 |
+
Smoothness of the audio interpolation. 1.0 means linear interpolation.
|
625 |
+
negative_prompt (Optional[str], *optional*, defaults to None):
|
626 |
+
Optional negative prompt to use. Same across all prompts.
|
627 |
+
make_video (Optional[bool], *optional*, defaults to True):
|
628 |
+
When True, makes a video from the generated frames. If False, only
|
629 |
+
generates the frames.
|
630 |
+
This function will create sub directories for each prompt and seed pair.
|
631 |
+
For example, if you provide the following prompts and seeds:
|
632 |
+
```
|
633 |
+
prompts = ['a dog', 'a cat', 'a bird']
|
634 |
+
seeds = [1, 2, 3]
|
635 |
+
num_interpolation_steps = 5
|
636 |
+
output_dir = 'output_dir'
|
637 |
+
name = 'name'
|
638 |
+
fps = 5
|
639 |
+
```
|
640 |
+
Then the following directories will be created:
|
641 |
+
```
|
642 |
+
output_dir
|
643 |
+
├── name
|
644 |
+
│ ├── name_000000
|
645 |
+
│ │ ├── frame000000.png
|
646 |
+
│ │ ├── ...
|
647 |
+
│ │ ├── frame000004.png
|
648 |
+
│ │ ├── name_000000.mp4
|
649 |
+
│ ├── name_000001
|
650 |
+
│ │ ├── frame000000.png
|
651 |
+
│ │ ├── ...
|
652 |
+
│ │ ├── frame000004.png
|
653 |
+
│ │ ├── name_000001.mp4
|
654 |
+
│ ├── ...
|
655 |
+
│ ├── name.mp4
|
656 |
+
| |── prompt_config.json
|
657 |
+
```
|
658 |
+
Returns:
|
659 |
+
str: The resulting video filepath. This video includes all sub directories' video clips.
|
660 |
+
"""
|
661 |
+
# 0. Default height and width to unet
|
662 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
663 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
664 |
+
|
665 |
+
output_path = Path(output_dir)
|
666 |
+
|
667 |
+
name = name or time.strftime("%Y%m%d-%H%M%S")
|
668 |
+
save_path_root = output_path / name
|
669 |
+
save_path_root.mkdir(parents=True, exist_ok=True)
|
670 |
+
|
671 |
+
# Where the final video of all the clips combined will be saved
|
672 |
+
output_filepath = save_path_root / f"{name}.mp4"
|
673 |
+
|
674 |
+
# If using same number of interpolation steps between, we turn into list
|
675 |
+
if not resume and isinstance(num_interpolation_steps, int):
|
676 |
+
num_interpolation_steps = [num_interpolation_steps] * (len(prompts) - 1)
|
677 |
+
|
678 |
+
if not resume:
|
679 |
+
audio_start_sec = audio_start_sec or 0
|
680 |
+
|
681 |
+
# Save/reload prompt config
|
682 |
+
prompt_config_path = save_path_root / "prompt_config.json"
|
683 |
+
if not resume:
|
684 |
+
prompt_config_path.write_text(
|
685 |
+
json.dumps(
|
686 |
+
dict(
|
687 |
+
prompts=prompts,
|
688 |
+
seeds=seeds,
|
689 |
+
num_interpolation_steps=num_interpolation_steps,
|
690 |
+
fps=fps,
|
691 |
+
num_inference_steps=num_inference_steps,
|
692 |
+
guidance_scale=guidance_scale,
|
693 |
+
eta=eta,
|
694 |
+
upsample=upsample,
|
695 |
+
height=height,
|
696 |
+
width=width,
|
697 |
+
audio_filepath=audio_filepath,
|
698 |
+
audio_start_sec=audio_start_sec,
|
699 |
+
negative_prompt=negative_prompt,
|
700 |
+
),
|
701 |
+
indent=2,
|
702 |
+
sort_keys=False,
|
703 |
+
)
|
704 |
+
)
|
705 |
+
else:
|
706 |
+
data = json.load(open(prompt_config_path))
|
707 |
+
prompts = data["prompts"]
|
708 |
+
seeds = data["seeds"]
|
709 |
+
num_interpolation_steps = data["num_interpolation_steps"]
|
710 |
+
fps = data["fps"]
|
711 |
+
num_inference_steps = data["num_inference_steps"]
|
712 |
+
guidance_scale = data["guidance_scale"]
|
713 |
+
eta = data["eta"]
|
714 |
+
upsample = data["upsample"]
|
715 |
+
height = data["height"]
|
716 |
+
width = data["width"]
|
717 |
+
audio_filepath = data["audio_filepath"]
|
718 |
+
audio_start_sec = data["audio_start_sec"]
|
719 |
+
negative_prompt = data.get("negative_prompt", None)
|
720 |
+
|
721 |
+
for i, (prompt_a, prompt_b, seed_a, seed_b, num_step) in enumerate(
|
722 |
+
zip(prompts, prompts[1:], seeds, seeds[1:], num_interpolation_steps)
|
723 |
+
):
|
724 |
+
# {name}_000000 / {name}_000001 / ...
|
725 |
+
save_path = save_path_root / f"{name}_{i:06d}"
|
726 |
+
|
727 |
+
# Where the individual clips will be saved
|
728 |
+
step_output_filepath = save_path / f"{name}_{i:06d}.mp4"
|
729 |
+
|
730 |
+
# Determine if we need to resume from a previous run
|
731 |
+
skip = 0
|
732 |
+
if resume:
|
733 |
+
if step_output_filepath.exists():
|
734 |
+
print(f"Skipping {save_path} because frames already exist")
|
735 |
+
continue
|
736 |
+
|
737 |
+
existing_frames = sorted(save_path.glob(f"*{image_file_ext}"))
|
738 |
+
if existing_frames:
|
739 |
+
skip = int(existing_frames[-1].stem[-6:]) + 1
|
740 |
+
if skip + 1 >= num_step:
|
741 |
+
print(f"Skipping {save_path} because frames already exist")
|
742 |
+
continue
|
743 |
+
print(f"Resuming {save_path.name} from frame {skip}")
|
744 |
+
|
745 |
+
audio_offset = audio_start_sec + sum(num_interpolation_steps[:i]) / fps
|
746 |
+
audio_duration = num_step / fps
|
747 |
+
|
748 |
+
self.make_clip_frames(
|
749 |
+
prompt_a,
|
750 |
+
prompt_b,
|
751 |
+
seed_a,
|
752 |
+
seed_b,
|
753 |
+
num_interpolation_steps=num_step,
|
754 |
+
save_path=save_path,
|
755 |
+
num_inference_steps=num_inference_steps,
|
756 |
+
guidance_scale=guidance_scale,
|
757 |
+
eta=eta,
|
758 |
+
height=height,
|
759 |
+
width=width,
|
760 |
+
upsample=upsample,
|
761 |
+
batch_size=batch_size,
|
762 |
+
T=get_timesteps_arr(
|
763 |
+
audio_filepath,
|
764 |
+
offset=audio_offset,
|
765 |
+
duration=audio_duration,
|
766 |
+
fps=fps,
|
767 |
+
margin=margin,
|
768 |
+
smooth=smooth,
|
769 |
+
)
|
770 |
+
if audio_filepath
|
771 |
+
else None,
|
772 |
+
skip=skip,
|
773 |
+
negative_prompt=negative_prompt,
|
774 |
+
step=(i, len(prompts) - 1),
|
775 |
+
)
|
776 |
+
if make_video:
|
777 |
+
make_video_pyav(
|
778 |
+
save_path,
|
779 |
+
audio_filepath=audio_filepath,
|
780 |
+
fps=fps,
|
781 |
+
output_filepath=step_output_filepath,
|
782 |
+
glob_pattern=f"*{image_file_ext}",
|
783 |
+
audio_offset=audio_offset,
|
784 |
+
audio_duration=audio_duration,
|
785 |
+
sr=44100,
|
786 |
+
)
|
787 |
+
if make_video:
|
788 |
+
return make_video_pyav(
|
789 |
+
save_path_root,
|
790 |
+
audio_filepath=audio_filepath,
|
791 |
+
fps=fps,
|
792 |
+
audio_offset=audio_start_sec,
|
793 |
+
audio_duration=sum(num_interpolation_steps) / fps,
|
794 |
+
output_filepath=output_filepath,
|
795 |
+
glob_pattern=f"**/*{image_file_ext}",
|
796 |
+
sr=44100,
|
797 |
+
)
|
798 |
+
|
799 |
+
def embed_text(self, text, negative_prompt=None):
|
800 |
+
"""Helper to embed some text"""
|
801 |
+
text_input = self.tokenizer(
|
802 |
+
text,
|
803 |
+
padding="max_length",
|
804 |
+
max_length=self.tokenizer.model_max_length,
|
805 |
+
truncation=True,
|
806 |
+
return_tensors="pt",
|
807 |
+
)
|
808 |
+
with torch.no_grad():
|
809 |
+
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
810 |
+
return embed
|
811 |
+
|
812 |
+
def init_noise(self, seed, noise_shape, dtype):
|
813 |
+
"""Helper to initialize noise"""
|
814 |
+
# randn does not exist on mps, so we create noise on CPU here and move it to the device after initialization
|
815 |
+
if self.device.type == "mps":
|
816 |
+
noise = torch.randn(
|
817 |
+
noise_shape,
|
818 |
+
device="cpu",
|
819 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
820 |
+
).to(self.device)
|
821 |
+
else:
|
822 |
+
noise = torch.randn(
|
823 |
+
noise_shape,
|
824 |
+
device=self.device,
|
825 |
+
generator=torch.Generator(device=self.device).manual_seed(seed),
|
826 |
+
dtype=dtype,
|
827 |
+
)
|
828 |
+
return noise
|
829 |
+
|
830 |
+
@classmethod
|
831 |
+
def from_pretrained(cls, *args, tiled=False, **kwargs):
|
832 |
+
"""Same as diffusers `from_pretrained` but with tiled option, which makes images tilable"""
|
833 |
+
if tiled:
|
834 |
+
|
835 |
+
def patch_conv(**patch):
|
836 |
+
cls = nn.Conv2d
|
837 |
+
init = cls.__init__
|
838 |
+
|
839 |
+
def __init__(self, *args, **kwargs):
|
840 |
+
return init(self, *args, **kwargs, **patch)
|
841 |
+
|
842 |
+
cls.__init__ = __init__
|
843 |
+
|
844 |
+
patch_conv(padding_mode="circular")
|
845 |
+
|
846 |
+
pipeline = super().from_pretrained(*args, **kwargs)
|
847 |
+
pipeline.tiled = tiled
|
848 |
+
return pipeline
|
video_diffusion/stable_diffusion_video/stable_video_text2video.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from video_diffusion.stable_diffusion_video.stable_diffusion_pipeline import StableDiffusionWalkPipeline
|
6 |
+
from video_diffusion.utils.model_list import stable_model_list
|
7 |
+
|
8 |
+
|
9 |
+
class StableDiffusionText2VideoGenerator:
|
10 |
+
def __init__(self):
|
11 |
+
self.pipe = None
|
12 |
+
|
13 |
+
def load_model(
|
14 |
+
self,
|
15 |
+
model_path,
|
16 |
+
):
|
17 |
+
if self.pipe is None:
|
18 |
+
self.pipe = StableDiffusionWalkPipeline.from_pretrained(
|
19 |
+
model_path,
|
20 |
+
torch_dtype=torch.float16,
|
21 |
+
revision="fp16",
|
22 |
+
)
|
23 |
+
|
24 |
+
self.pipe.to("cuda")
|
25 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
26 |
+
self.pipe.enable_attention_slicing()
|
27 |
+
|
28 |
+
return self.pipe
|
29 |
+
|
30 |
+
def generate_video(
|
31 |
+
self,
|
32 |
+
model_path: str,
|
33 |
+
first_prompts: str,
|
34 |
+
second_prompts: str,
|
35 |
+
negative_prompt: str,
|
36 |
+
num_interpolation_steps: int,
|
37 |
+
guidance_scale: int,
|
38 |
+
num_inference_step: int,
|
39 |
+
height: int,
|
40 |
+
width: int,
|
41 |
+
upsample: bool,
|
42 |
+
fps=int,
|
43 |
+
):
|
44 |
+
first_seed = np.random.randint(0, 100000)
|
45 |
+
second_seed = np.random.randint(0, 100000)
|
46 |
+
seeds = [first_seed, second_seed]
|
47 |
+
prompts = [first_prompts, second_prompts]
|
48 |
+
pipe = self.load_model(model_path=model_path)
|
49 |
+
|
50 |
+
output_video = pipe.walk(
|
51 |
+
prompts=prompts,
|
52 |
+
num_interpolation_steps=int(num_interpolation_steps),
|
53 |
+
height=height,
|
54 |
+
width=width,
|
55 |
+
guidance_scale=guidance_scale,
|
56 |
+
num_inference_steps=num_inference_step,
|
57 |
+
negative_prompt=negative_prompt,
|
58 |
+
seeds=seeds,
|
59 |
+
upsample=upsample,
|
60 |
+
fps=fps,
|
61 |
+
)
|
62 |
+
|
63 |
+
return output_video
|
64 |
+
|
65 |
+
def app():
|
66 |
+
with gr.Blocks():
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
stable_text2video_first_prompt = gr.Textbox(
|
70 |
+
lines=1,
|
71 |
+
placeholder="First Prompt",
|
72 |
+
show_label=False,
|
73 |
+
)
|
74 |
+
stable_text2video_second_prompt = gr.Textbox(
|
75 |
+
lines=1,
|
76 |
+
placeholder="Second Prompt",
|
77 |
+
show_label=False,
|
78 |
+
)
|
79 |
+
stable_text2video_negative_prompt = gr.Textbox(
|
80 |
+
lines=1,
|
81 |
+
placeholder="Negative Prompt ",
|
82 |
+
show_label=False,
|
83 |
+
)
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
stable_text2video_model_path = gr.Dropdown(
|
87 |
+
choices=stable_model_list,
|
88 |
+
label="Stable Model List",
|
89 |
+
value=stable_model_list[0],
|
90 |
+
)
|
91 |
+
stable_text2video_guidance_scale = gr.Slider(
|
92 |
+
minimum=0,
|
93 |
+
maximum=15,
|
94 |
+
step=1,
|
95 |
+
value=8.5,
|
96 |
+
label="Guidance Scale",
|
97 |
+
)
|
98 |
+
stable_text2video_num_inference_steps = gr.Slider(
|
99 |
+
minimum=1,
|
100 |
+
maximum=100,
|
101 |
+
step=1,
|
102 |
+
value=30,
|
103 |
+
label="Number of Inference Steps",
|
104 |
+
)
|
105 |
+
stable_text2video_fps = gr.Slider(
|
106 |
+
minimum=1,
|
107 |
+
maximum=60,
|
108 |
+
step=1,
|
109 |
+
value=10,
|
110 |
+
label="Fps",
|
111 |
+
)
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
stable_text2video_num_interpolation_steps = gr.Number(
|
115 |
+
value=10,
|
116 |
+
label="Number of Interpolation Steps",
|
117 |
+
)
|
118 |
+
stable_text2video_height = gr.Slider(
|
119 |
+
minimum=1,
|
120 |
+
maximum=1000,
|
121 |
+
step=1,
|
122 |
+
value=512,
|
123 |
+
label="Height",
|
124 |
+
)
|
125 |
+
stable_text2video_width = gr.Slider(
|
126 |
+
minimum=1,
|
127 |
+
maximum=1000,
|
128 |
+
step=1,
|
129 |
+
value=512,
|
130 |
+
label="Width",
|
131 |
+
)
|
132 |
+
stable_text2video_upsample = gr.Checkbox(
|
133 |
+
label="Upsample",
|
134 |
+
default=False,
|
135 |
+
)
|
136 |
+
|
137 |
+
text2video_generate = gr.Button(value="Generator")
|
138 |
+
|
139 |
+
with gr.Column():
|
140 |
+
text2video_output = gr.Video(label="Output")
|
141 |
+
|
142 |
+
text2video_generate.click(
|
143 |
+
fn=StableDiffusionText2VideoGenerator().generate_video,
|
144 |
+
inputs=[
|
145 |
+
stable_text2video_model_path,
|
146 |
+
stable_text2video_first_prompt,
|
147 |
+
stable_text2video_second_prompt,
|
148 |
+
stable_text2video_negative_prompt,
|
149 |
+
stable_text2video_num_interpolation_steps,
|
150 |
+
stable_text2video_guidance_scale,
|
151 |
+
stable_text2video_num_inference_steps,
|
152 |
+
stable_text2video_height,
|
153 |
+
stable_text2video_width,
|
154 |
+
stable_text2video_upsample,
|
155 |
+
stable_text2video_fps,
|
156 |
+
],
|
157 |
+
outputs=text2video_output,
|
158 |
+
)
|
video_diffusion/stable_diffusion_video/upsampling.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
from diffusers.utils import logging
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from PIL import Image
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
try:
|
10 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
11 |
+
from realesrgan import RealESRGANer
|
12 |
+
except ImportError as e:
|
13 |
+
raise ImportError(
|
14 |
+
"You tried to import realesrgan without having it installed properly. To install Real-ESRGAN, run:\n\n"
|
15 |
+
"pip install realesrgan"
|
16 |
+
)
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
19 |
+
|
20 |
+
|
21 |
+
class RealESRGANModel(nn.Module):
|
22 |
+
def __init__(self, model_path, tile=0, tile_pad=10, pre_pad=0, fp32=False):
|
23 |
+
super().__init__()
|
24 |
+
try:
|
25 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
26 |
+
from realesrgan import RealESRGANer
|
27 |
+
except ImportError as e:
|
28 |
+
raise ImportError(
|
29 |
+
"You tried to import realesrgan without having it installed properly. To install Real-ESRGAN, run:\n\n"
|
30 |
+
"pip install realesrgan"
|
31 |
+
)
|
32 |
+
|
33 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
34 |
+
self.upsampler = RealESRGANer(
|
35 |
+
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=tile_pad, pre_pad=pre_pad, half=not fp32
|
36 |
+
)
|
37 |
+
|
38 |
+
def forward(self, image, outscale=4, convert_to_pil=True):
|
39 |
+
"""Upsample an image array or path.
|
40 |
+
Args:
|
41 |
+
image (Union[np.ndarray, str]): Either a np array or an image path. np array is assumed to be in RGB format,
|
42 |
+
and we convert it to BGR.
|
43 |
+
outscale (int, optional): Amount to upscale the image. Defaults to 4.
|
44 |
+
convert_to_pil (bool, optional): If True, return PIL image. Otherwise, return numpy array (BGR). Defaults to True.
|
45 |
+
Returns:
|
46 |
+
Union[np.ndarray, PIL.Image.Image]: An upsampled version of the input image.
|
47 |
+
"""
|
48 |
+
if isinstance(image, (str, Path)):
|
49 |
+
img = cv2.imread(image, cv2.IMREAD_UNCHANGED)
|
50 |
+
else:
|
51 |
+
img = image
|
52 |
+
img = (img * 255).round().astype("uint8")
|
53 |
+
img = img[:, :, ::-1]
|
54 |
+
|
55 |
+
image, _ = self.upsampler.enhance(img, outscale=outscale)
|
56 |
+
|
57 |
+
if convert_to_pil:
|
58 |
+
image = Image.fromarray(image[:, :, ::-1])
|
59 |
+
|
60 |
+
return image
|
61 |
+
|
62 |
+
@classmethod
|
63 |
+
def from_pretrained(cls, model_name_or_path="nateraw/real-esrgan"):
|
64 |
+
"""Initialize a pretrained Real-ESRGAN upsampler.
|
65 |
+
Example:
|
66 |
+
```python
|
67 |
+
>>> from stable_diffusion_videos import PipelineRealESRGAN
|
68 |
+
>>> pipe = PipelineRealESRGAN.from_pretrained('nateraw/real-esrgan')
|
69 |
+
>>> im_out = pipe('input_img.jpg')
|
70 |
+
```
|
71 |
+
Args:
|
72 |
+
model_name_or_path (str, optional): The Hugging Face repo ID or path to local model. Defaults to 'nateraw/real-esrgan'.
|
73 |
+
Returns:
|
74 |
+
stable_diffusion_videos.PipelineRealESRGAN: An instance of `PipelineRealESRGAN` instantiated from pretrained model.
|
75 |
+
"""
|
76 |
+
# reuploaded form official ones mentioned here:
|
77 |
+
# https://github.com/xinntao/Real-ESRGAN
|
78 |
+
if Path(model_name_or_path).exists():
|
79 |
+
file = model_name_or_path
|
80 |
+
else:
|
81 |
+
file = hf_hub_download(model_name_or_path, "RealESRGAN_x4plus.pth")
|
82 |
+
return cls(file)
|
83 |
+
|
84 |
+
def upsample_imagefolder(self, in_dir, out_dir, suffix="out", outfile_ext=".png", recursive=False, force=False):
|
85 |
+
in_dir, out_dir = Path(in_dir), Path(out_dir)
|
86 |
+
if not in_dir.exists():
|
87 |
+
raise FileNotFoundError(f"Provided input directory {in_dir} does not exist")
|
88 |
+
|
89 |
+
out_dir.mkdir(exist_ok=True, parents=True)
|
90 |
+
|
91 |
+
generator = in_dir.rglob("*") if recursive else in_dir.glob("*")
|
92 |
+
image_paths = [x for x in generator if x.suffix.lower() in [".png", ".jpg", ".jpeg"]]
|
93 |
+
n_img = len(image_paths)
|
94 |
+
for i, image in enumerate(image_paths):
|
95 |
+
out_filepath = out_dir / (str(image.relative_to(in_dir).with_suffix("")) + suffix + outfile_ext)
|
96 |
+
if not force and out_filepath.exists():
|
97 |
+
logger.info(
|
98 |
+
f"[{i}/{n_img}] {out_filepath} already exists, skipping. To avoid skipping, pass force=True."
|
99 |
+
)
|
100 |
+
continue
|
101 |
+
logger.info(f"[{i}/{n_img}] upscaling {image}")
|
102 |
+
im = self(str(image))
|
103 |
+
out_filepath.parent.mkdir(parents=True, exist_ok=True)
|
104 |
+
im.save(out_filepath)
|
video_diffusion/stable_diffusion_video/utils.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
from torchvision.io import write_video
|
9 |
+
from torchvision.transforms.functional import pil_to_tensor
|
10 |
+
|
11 |
+
|
12 |
+
def get_timesteps_arr(audio_filepath, offset, duration, fps=30, margin=1.0, smooth=0.0):
|
13 |
+
y, sr = librosa.load(audio_filepath, offset=offset, duration=duration)
|
14 |
+
|
15 |
+
# librosa.stft hardcoded defaults...
|
16 |
+
# n_fft defaults to 2048
|
17 |
+
# hop length is win_length // 4
|
18 |
+
# win_length defaults to n_fft
|
19 |
+
D = librosa.stft(y, n_fft=2048, hop_length=2048 // 4, win_length=2048)
|
20 |
+
|
21 |
+
# Extract percussive elements
|
22 |
+
D_harmonic, D_percussive = librosa.decompose.hpss(D, margin=margin)
|
23 |
+
y_percussive = librosa.istft(D_percussive, length=len(y))
|
24 |
+
|
25 |
+
# Get normalized melspectrogram
|
26 |
+
spec_raw = librosa.feature.melspectrogram(y=y_percussive, sr=sr)
|
27 |
+
spec_max = np.amax(spec_raw, axis=0)
|
28 |
+
spec_norm = (spec_max - np.min(spec_max)) / np.ptp(spec_max)
|
29 |
+
|
30 |
+
# Resize cumsum of spec norm to our desired number of interpolation frames
|
31 |
+
x_norm = np.linspace(0, spec_norm.shape[-1], spec_norm.shape[-1])
|
32 |
+
y_norm = np.cumsum(spec_norm)
|
33 |
+
y_norm /= y_norm[-1]
|
34 |
+
x_resize = np.linspace(0, y_norm.shape[-1], int(duration * fps))
|
35 |
+
|
36 |
+
T = np.interp(x_resize, x_norm, y_norm)
|
37 |
+
|
38 |
+
# Apply smoothing
|
39 |
+
return T * (1 - smooth) + np.linspace(0.0, 1.0, T.shape[0]) * smooth
|
40 |
+
|
41 |
+
|
42 |
+
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
|
43 |
+
"""helper function to spherically interpolate two arrays v1 v2"""
|
44 |
+
|
45 |
+
inputs_are_torch = isinstance(v0, torch.Tensor)
|
46 |
+
if inputs_are_torch:
|
47 |
+
input_device = v0.device
|
48 |
+
v0 = v0.cpu().numpy()
|
49 |
+
v1 = v1.cpu().numpy()
|
50 |
+
|
51 |
+
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
52 |
+
if np.abs(dot) > DOT_THRESHOLD:
|
53 |
+
v2 = (1 - t) * v0 + t * v1
|
54 |
+
else:
|
55 |
+
theta_0 = np.arccos(dot)
|
56 |
+
sin_theta_0 = np.sin(theta_0)
|
57 |
+
theta_t = theta_0 * t
|
58 |
+
sin_theta_t = np.sin(theta_t)
|
59 |
+
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
60 |
+
s1 = sin_theta_t / sin_theta_0
|
61 |
+
v2 = s0 * v0 + s1 * v1
|
62 |
+
|
63 |
+
if inputs_are_torch:
|
64 |
+
v2 = torch.from_numpy(v2).to(input_device)
|
65 |
+
|
66 |
+
return v2
|
67 |
+
|
68 |
+
|
69 |
+
def make_video_pyav(
|
70 |
+
frames_or_frame_dir: Union[str, Path, torch.Tensor],
|
71 |
+
audio_filepath: Union[str, Path] = None,
|
72 |
+
fps: int = 30,
|
73 |
+
audio_offset: int = 0,
|
74 |
+
audio_duration: int = 2,
|
75 |
+
sr: int = 22050,
|
76 |
+
output_filepath: Union[str, Path] = "output.mp4",
|
77 |
+
glob_pattern: str = "*.png",
|
78 |
+
):
|
79 |
+
"""
|
80 |
+
TODO - docstring here
|
81 |
+
frames_or_frame_dir: (Union[str, Path, torch.Tensor]):
|
82 |
+
Either a directory of images, or a tensor of shape (T, C, H, W) in range [0, 255].
|
83 |
+
"""
|
84 |
+
|
85 |
+
# Torchvision write_video doesn't support pathlib paths
|
86 |
+
output_filepath = str(output_filepath)
|
87 |
+
|
88 |
+
if isinstance(frames_or_frame_dir, (str, Path)):
|
89 |
+
frames = None
|
90 |
+
for img in sorted(Path(frames_or_frame_dir).glob(glob_pattern)):
|
91 |
+
frame = pil_to_tensor(Image.open(img)).unsqueeze(0)
|
92 |
+
frames = frame if frames is None else torch.cat([frames, frame])
|
93 |
+
else:
|
94 |
+
frames = frames_or_frame_dir
|
95 |
+
|
96 |
+
# TCHW -> THWC
|
97 |
+
frames = frames.permute(0, 2, 3, 1)
|
98 |
+
|
99 |
+
if audio_filepath:
|
100 |
+
# Read audio, convert to tensor
|
101 |
+
audio, sr = librosa.load(
|
102 |
+
audio_filepath,
|
103 |
+
sr=sr,
|
104 |
+
mono=True,
|
105 |
+
offset=audio_offset,
|
106 |
+
duration=audio_duration,
|
107 |
+
)
|
108 |
+
audio_tensor = torch.tensor(audio).unsqueeze(0)
|
109 |
+
|
110 |
+
write_video(
|
111 |
+
output_filepath,
|
112 |
+
frames,
|
113 |
+
fps=fps,
|
114 |
+
audio_array=audio_tensor,
|
115 |
+
audio_fps=sr,
|
116 |
+
audio_codec="aac",
|
117 |
+
options={"crf": "10", "pix_fmt": "yuv420p"},
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
write_video(
|
121 |
+
output_filepath,
|
122 |
+
frames,
|
123 |
+
fps=fps,
|
124 |
+
options={"crf": "10", "pix_fmt": "yuv420p"},
|
125 |
+
)
|
126 |
+
|
127 |
+
return output_filepath
|
128 |
+
|
129 |
+
|
130 |
+
def pad_along_axis(array: np.ndarray, pad_size: int, axis: int = 0) -> np.ndarray:
|
131 |
+
if pad_size <= 0:
|
132 |
+
return array
|
133 |
+
npad = [(0, 0)] * array.ndim
|
134 |
+
npad[axis] = (0, pad_size)
|
135 |
+
return np.pad(array, pad_width=npad, mode="constant", constant_values=0)
|
video_diffusion/tuneavideo/models/attention.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.models.attention import AdaLayerNorm, FeedForward
|
10 |
+
from diffusers.models.cross_attention import CrossAttention
|
11 |
+
from diffusers.models.modeling_utils import ModelMixin
|
12 |
+
from diffusers.utils import BaseOutput
|
13 |
+
from diffusers.utils.import_utils import is_xformers_available
|
14 |
+
from einops import rearrange, repeat
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class Transformer3DModelOutput(BaseOutput):
|
20 |
+
sample: torch.FloatTensor
|
21 |
+
|
22 |
+
|
23 |
+
if is_xformers_available():
|
24 |
+
import xformers
|
25 |
+
import xformers.ops
|
26 |
+
else:
|
27 |
+
xformers = None
|
28 |
+
|
29 |
+
|
30 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
31 |
+
@register_to_config
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
num_attention_heads: int = 16,
|
35 |
+
attention_head_dim: int = 88,
|
36 |
+
in_channels: Optional[int] = None,
|
37 |
+
num_layers: int = 1,
|
38 |
+
dropout: float = 0.0,
|
39 |
+
norm_num_groups: int = 32,
|
40 |
+
cross_attention_dim: Optional[int] = None,
|
41 |
+
attention_bias: bool = False,
|
42 |
+
activation_fn: str = "geglu",
|
43 |
+
num_embeds_ada_norm: Optional[int] = None,
|
44 |
+
use_linear_projection: bool = False,
|
45 |
+
only_cross_attention: bool = False,
|
46 |
+
upcast_attention: bool = False,
|
47 |
+
):
|
48 |
+
super().__init__()
|
49 |
+
self.use_linear_projection = use_linear_projection
|
50 |
+
self.num_attention_heads = num_attention_heads
|
51 |
+
self.attention_head_dim = attention_head_dim
|
52 |
+
inner_dim = num_attention_heads * attention_head_dim
|
53 |
+
|
54 |
+
# Define input layers
|
55 |
+
self.in_channels = in_channels
|
56 |
+
|
57 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
58 |
+
if use_linear_projection:
|
59 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
60 |
+
else:
|
61 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
62 |
+
|
63 |
+
# Define transformers blocks
|
64 |
+
self.transformer_blocks = nn.ModuleList(
|
65 |
+
[
|
66 |
+
BasicTransformerBlock(
|
67 |
+
inner_dim,
|
68 |
+
num_attention_heads,
|
69 |
+
attention_head_dim,
|
70 |
+
dropout=dropout,
|
71 |
+
cross_attention_dim=cross_attention_dim,
|
72 |
+
activation_fn=activation_fn,
|
73 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
74 |
+
attention_bias=attention_bias,
|
75 |
+
only_cross_attention=only_cross_attention,
|
76 |
+
upcast_attention=upcast_attention,
|
77 |
+
)
|
78 |
+
for d in range(num_layers)
|
79 |
+
]
|
80 |
+
)
|
81 |
+
|
82 |
+
# 4. Define output layers
|
83 |
+
if use_linear_projection:
|
84 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
85 |
+
else:
|
86 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
87 |
+
|
88 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
89 |
+
# Input
|
90 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
91 |
+
video_length = hidden_states.shape[2]
|
92 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
93 |
+
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b f) n c", f=video_length)
|
94 |
+
|
95 |
+
batch, channel, height, weight = hidden_states.shape
|
96 |
+
residual = hidden_states
|
97 |
+
|
98 |
+
hidden_states = self.norm(hidden_states)
|
99 |
+
if not self.use_linear_projection:
|
100 |
+
hidden_states = self.proj_in(hidden_states)
|
101 |
+
inner_dim = hidden_states.shape[1]
|
102 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
103 |
+
else:
|
104 |
+
inner_dim = hidden_states.shape[1]
|
105 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
106 |
+
hidden_states = self.proj_in(hidden_states)
|
107 |
+
|
108 |
+
# Blocks
|
109 |
+
for block in self.transformer_blocks:
|
110 |
+
hidden_states = block(
|
111 |
+
hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length
|
112 |
+
)
|
113 |
+
|
114 |
+
# Output
|
115 |
+
if not self.use_linear_projection:
|
116 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
117 |
+
hidden_states = self.proj_out(hidden_states)
|
118 |
+
else:
|
119 |
+
hidden_states = self.proj_out(hidden_states)
|
120 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
121 |
+
|
122 |
+
output = hidden_states + residual
|
123 |
+
|
124 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
125 |
+
if not return_dict:
|
126 |
+
return (output,)
|
127 |
+
|
128 |
+
return Transformer3DModelOutput(sample=output)
|
129 |
+
|
130 |
+
|
131 |
+
class BasicTransformerBlock(nn.Module):
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
dim: int,
|
135 |
+
num_attention_heads: int,
|
136 |
+
attention_head_dim: int,
|
137 |
+
dropout=0.0,
|
138 |
+
cross_attention_dim: Optional[int] = None,
|
139 |
+
activation_fn: str = "geglu",
|
140 |
+
num_embeds_ada_norm: Optional[int] = None,
|
141 |
+
attention_bias: bool = False,
|
142 |
+
only_cross_attention: bool = False,
|
143 |
+
upcast_attention: bool = False,
|
144 |
+
):
|
145 |
+
super().__init__()
|
146 |
+
self.only_cross_attention = only_cross_attention
|
147 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
148 |
+
|
149 |
+
# SC-Attn
|
150 |
+
self.attn1 = SparseCausalAttention(
|
151 |
+
query_dim=dim,
|
152 |
+
heads=num_attention_heads,
|
153 |
+
dim_head=attention_head_dim,
|
154 |
+
dropout=dropout,
|
155 |
+
bias=attention_bias,
|
156 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
157 |
+
upcast_attention=upcast_attention,
|
158 |
+
)
|
159 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
160 |
+
|
161 |
+
# Cross-Attn
|
162 |
+
if cross_attention_dim is not None:
|
163 |
+
self.attn2 = CrossAttention(
|
164 |
+
query_dim=dim,
|
165 |
+
cross_attention_dim=cross_attention_dim,
|
166 |
+
heads=num_attention_heads,
|
167 |
+
dim_head=attention_head_dim,
|
168 |
+
dropout=dropout,
|
169 |
+
bias=attention_bias,
|
170 |
+
upcast_attention=upcast_attention,
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
self.attn2 = None
|
174 |
+
|
175 |
+
if cross_attention_dim is not None:
|
176 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
177 |
+
else:
|
178 |
+
self.norm2 = None
|
179 |
+
|
180 |
+
# Feed-forward
|
181 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
182 |
+
self.norm3 = nn.LayerNorm(dim)
|
183 |
+
|
184 |
+
# Temp-Attn
|
185 |
+
self.attn_temp = CrossAttention(
|
186 |
+
query_dim=dim,
|
187 |
+
heads=num_attention_heads,
|
188 |
+
dim_head=attention_head_dim,
|
189 |
+
dropout=dropout,
|
190 |
+
bias=attention_bias,
|
191 |
+
upcast_attention=upcast_attention,
|
192 |
+
)
|
193 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
194 |
+
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
195 |
+
|
196 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
197 |
+
if not is_xformers_available():
|
198 |
+
print("Here is how to install it")
|
199 |
+
raise ModuleNotFoundError(
|
200 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
201 |
+
" xformers",
|
202 |
+
name="xformers",
|
203 |
+
)
|
204 |
+
elif not torch.cuda.is_available():
|
205 |
+
raise ValueError(
|
206 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
207 |
+
" available for GPU "
|
208 |
+
)
|
209 |
+
else:
|
210 |
+
try:
|
211 |
+
# Make sure we can run the memory efficient attention
|
212 |
+
_ = xformers.ops.memory_efficient_attention(
|
213 |
+
torch.randn((1, 2, 40), device="cuda"),
|
214 |
+
torch.randn((1, 2, 40), device="cuda"),
|
215 |
+
torch.randn((1, 2, 40), device="cuda"),
|
216 |
+
)
|
217 |
+
except Exception as e:
|
218 |
+
raise e
|
219 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
220 |
+
if self.attn2 is not None:
|
221 |
+
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
222 |
+
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
223 |
+
|
224 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
|
225 |
+
# SparseCausal-Attention
|
226 |
+
norm_hidden_states = (
|
227 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
228 |
+
)
|
229 |
+
|
230 |
+
if self.only_cross_attention:
|
231 |
+
hidden_states = (
|
232 |
+
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
|
233 |
+
)
|
234 |
+
else:
|
235 |
+
hidden_states = (
|
236 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
|
237 |
+
)
|
238 |
+
|
239 |
+
if self.attn2 is not None:
|
240 |
+
# Cross-Attention
|
241 |
+
norm_hidden_states = (
|
242 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
243 |
+
)
|
244 |
+
hidden_states = (
|
245 |
+
self.attn2(
|
246 |
+
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
247 |
+
)
|
248 |
+
+ hidden_states
|
249 |
+
)
|
250 |
+
|
251 |
+
# Feed-forward
|
252 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
253 |
+
|
254 |
+
# Temporal-Attention
|
255 |
+
d = hidden_states.shape[1]
|
256 |
+
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
257 |
+
norm_hidden_states = (
|
258 |
+
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
|
259 |
+
)
|
260 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
261 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
262 |
+
|
263 |
+
return hidden_states
|
264 |
+
|
265 |
+
|
266 |
+
class SparseCausalAttention(CrossAttention):
|
267 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
268 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
269 |
+
|
270 |
+
encoder_hidden_states = encoder_hidden_states
|
271 |
+
|
272 |
+
if self.group_norm is not None:
|
273 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
274 |
+
|
275 |
+
query = self.to_q(hidden_states)
|
276 |
+
dim = query.shape[-1]
|
277 |
+
query = self.reshape_heads_to_batch_dim(query)
|
278 |
+
|
279 |
+
if self.added_kv_proj_dim is not None:
|
280 |
+
raise NotImplementedError
|
281 |
+
|
282 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
283 |
+
key = self.to_k(encoder_hidden_states)
|
284 |
+
value = self.to_v(encoder_hidden_states)
|
285 |
+
|
286 |
+
former_frame_index = torch.arange(video_length) - 1
|
287 |
+
former_frame_index[0] = 0
|
288 |
+
|
289 |
+
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
|
290 |
+
key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
|
291 |
+
key = rearrange(key, "b f d c -> (b f) d c")
|
292 |
+
|
293 |
+
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
|
294 |
+
value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
|
295 |
+
value = rearrange(value, "b f d c -> (b f) d c")
|
296 |
+
|
297 |
+
key = self.reshape_heads_to_batch_dim(key)
|
298 |
+
value = self.reshape_heads_to_batch_dim(value)
|
299 |
+
|
300 |
+
if attention_mask is not None:
|
301 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
302 |
+
target_length = query.shape[1]
|
303 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
304 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
305 |
+
|
306 |
+
# attention, what we cannot get enough of
|
307 |
+
if self._use_memory_efficient_attention_xformers:
|
308 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
309 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
310 |
+
hidden_states = hidden_states.to(query.dtype)
|
311 |
+
else:
|
312 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
313 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
314 |
+
else:
|
315 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
316 |
+
|
317 |
+
# linear proj
|
318 |
+
hidden_states = self.to_out[0](hidden_states)
|
319 |
+
|
320 |
+
# dropout
|
321 |
+
hidden_states = self.to_out[1](hidden_states)
|
322 |
+
return hidden_states
|
video_diffusion/tuneavideo/models/resnet.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
|
9 |
+
class InflatedConv3d(nn.Conv2d):
|
10 |
+
def forward(self, x):
|
11 |
+
video_length = x.shape[2]
|
12 |
+
|
13 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
14 |
+
x = super().forward(x)
|
15 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
16 |
+
|
17 |
+
return x
|
18 |
+
|
19 |
+
|
20 |
+
class Upsample3D(nn.Module):
|
21 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
22 |
+
super().__init__()
|
23 |
+
self.channels = channels
|
24 |
+
self.out_channels = out_channels or channels
|
25 |
+
self.use_conv = use_conv
|
26 |
+
self.use_conv_transpose = use_conv_transpose
|
27 |
+
self.name = name
|
28 |
+
|
29 |
+
conv = None
|
30 |
+
if use_conv_transpose:
|
31 |
+
raise NotImplementedError
|
32 |
+
elif use_conv:
|
33 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
34 |
+
|
35 |
+
if name == "conv":
|
36 |
+
self.conv = conv
|
37 |
+
else:
|
38 |
+
self.Conv2d_0 = conv
|
39 |
+
|
40 |
+
def forward(self, hidden_states, output_size=None):
|
41 |
+
assert hidden_states.shape[1] == self.channels
|
42 |
+
|
43 |
+
if self.use_conv_transpose:
|
44 |
+
raise NotImplementedError
|
45 |
+
|
46 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
47 |
+
dtype = hidden_states.dtype
|
48 |
+
if dtype == torch.bfloat16:
|
49 |
+
hidden_states = hidden_states.to(torch.float32)
|
50 |
+
|
51 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
52 |
+
if hidden_states.shape[0] >= 64:
|
53 |
+
hidden_states = hidden_states.contiguous()
|
54 |
+
|
55 |
+
# if `output_size` is passed we force the interpolation output
|
56 |
+
# size and do not make use of `scale_factor=2`
|
57 |
+
if output_size is None:
|
58 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
59 |
+
else:
|
60 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
61 |
+
|
62 |
+
# If the input is bfloat16, we cast back to bfloat16
|
63 |
+
if dtype == torch.bfloat16:
|
64 |
+
hidden_states = hidden_states.to(dtype)
|
65 |
+
|
66 |
+
if self.use_conv:
|
67 |
+
if self.name == "conv":
|
68 |
+
hidden_states = self.conv(hidden_states)
|
69 |
+
else:
|
70 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
71 |
+
|
72 |
+
return hidden_states
|
73 |
+
|
74 |
+
|
75 |
+
class Downsample3D(nn.Module):
|
76 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
77 |
+
super().__init__()
|
78 |
+
self.channels = channels
|
79 |
+
self.out_channels = out_channels or channels
|
80 |
+
self.use_conv = use_conv
|
81 |
+
self.padding = padding
|
82 |
+
stride = 2
|
83 |
+
self.name = name
|
84 |
+
|
85 |
+
if use_conv:
|
86 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
87 |
+
else:
|
88 |
+
raise NotImplementedError
|
89 |
+
|
90 |
+
if name == "conv":
|
91 |
+
self.Conv2d_0 = conv
|
92 |
+
self.conv = conv
|
93 |
+
elif name == "Conv2d_0":
|
94 |
+
self.conv = conv
|
95 |
+
else:
|
96 |
+
self.conv = conv
|
97 |
+
|
98 |
+
def forward(self, hidden_states):
|
99 |
+
assert hidden_states.shape[1] == self.channels
|
100 |
+
if self.use_conv and self.padding == 0:
|
101 |
+
raise NotImplementedError
|
102 |
+
|
103 |
+
assert hidden_states.shape[1] == self.channels
|
104 |
+
hidden_states = self.conv(hidden_states)
|
105 |
+
|
106 |
+
return hidden_states
|
107 |
+
|
108 |
+
|
109 |
+
class ResnetBlock3D(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
*,
|
113 |
+
in_channels,
|
114 |
+
out_channels=None,
|
115 |
+
conv_shortcut=False,
|
116 |
+
dropout=0.0,
|
117 |
+
temb_channels=512,
|
118 |
+
groups=32,
|
119 |
+
groups_out=None,
|
120 |
+
pre_norm=True,
|
121 |
+
eps=1e-6,
|
122 |
+
non_linearity="swish",
|
123 |
+
time_embedding_norm="default",
|
124 |
+
output_scale_factor=1.0,
|
125 |
+
use_in_shortcut=None,
|
126 |
+
):
|
127 |
+
super().__init__()
|
128 |
+
self.pre_norm = pre_norm
|
129 |
+
self.pre_norm = True
|
130 |
+
self.in_channels = in_channels
|
131 |
+
out_channels = in_channels if out_channels is None else out_channels
|
132 |
+
self.out_channels = out_channels
|
133 |
+
self.use_conv_shortcut = conv_shortcut
|
134 |
+
self.time_embedding_norm = time_embedding_norm
|
135 |
+
self.output_scale_factor = output_scale_factor
|
136 |
+
|
137 |
+
if groups_out is None:
|
138 |
+
groups_out = groups
|
139 |
+
|
140 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
141 |
+
|
142 |
+
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
143 |
+
|
144 |
+
if temb_channels is not None:
|
145 |
+
if self.time_embedding_norm == "default":
|
146 |
+
time_emb_proj_out_channels = out_channels
|
147 |
+
elif self.time_embedding_norm == "scale_shift":
|
148 |
+
time_emb_proj_out_channels = out_channels * 2
|
149 |
+
else:
|
150 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
151 |
+
|
152 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
153 |
+
else:
|
154 |
+
self.time_emb_proj = None
|
155 |
+
|
156 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
157 |
+
self.dropout = torch.nn.Dropout(dropout)
|
158 |
+
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
159 |
+
|
160 |
+
if non_linearity == "swish":
|
161 |
+
self.nonlinearity = lambda x: F.silu(x)
|
162 |
+
elif non_linearity == "mish":
|
163 |
+
self.nonlinearity = Mish()
|
164 |
+
elif non_linearity == "silu":
|
165 |
+
self.nonlinearity = nn.SiLU()
|
166 |
+
|
167 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
168 |
+
|
169 |
+
self.conv_shortcut = None
|
170 |
+
if self.use_in_shortcut:
|
171 |
+
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
172 |
+
|
173 |
+
def forward(self, input_tensor, temb):
|
174 |
+
hidden_states = input_tensor
|
175 |
+
|
176 |
+
hidden_states = self.norm1(hidden_states)
|
177 |
+
hidden_states = self.nonlinearity(hidden_states)
|
178 |
+
|
179 |
+
hidden_states = self.conv1(hidden_states)
|
180 |
+
|
181 |
+
if temb is not None:
|
182 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
183 |
+
|
184 |
+
if temb is not None and self.time_embedding_norm == "default":
|
185 |
+
hidden_states = hidden_states + temb
|
186 |
+
|
187 |
+
hidden_states = self.norm2(hidden_states)
|
188 |
+
|
189 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
190 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
191 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
192 |
+
|
193 |
+
hidden_states = self.nonlinearity(hidden_states)
|
194 |
+
|
195 |
+
hidden_states = self.dropout(hidden_states)
|
196 |
+
hidden_states = self.conv2(hidden_states)
|
197 |
+
|
198 |
+
if self.conv_shortcut is not None:
|
199 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
200 |
+
|
201 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
202 |
+
|
203 |
+
return output_tensor
|
204 |
+
|
205 |
+
|
206 |
+
class Mish(torch.nn.Module):
|
207 |
+
def forward(self, hidden_states):
|
208 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
video_diffusion/tuneavideo/models/unet.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
2 |
+
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
12 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
13 |
+
from diffusers.models.modeling_utils import ModelMixin
|
14 |
+
from diffusers.utils import BaseOutput, logging
|
15 |
+
|
16 |
+
from .resnet import InflatedConv3d
|
17 |
+
from .unet_blocks import (
|
18 |
+
CrossAttnDownBlock3D,
|
19 |
+
CrossAttnUpBlock3D,
|
20 |
+
DownBlock3D,
|
21 |
+
UNetMidBlock3DCrossAttn,
|
22 |
+
UpBlock3D,
|
23 |
+
get_down_block,
|
24 |
+
get_up_block,
|
25 |
+
)
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class UNet3DConditionOutput(BaseOutput):
|
32 |
+
sample: torch.FloatTensor
|
33 |
+
|
34 |
+
|
35 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
36 |
+
_supports_gradient_checkpointing = True
|
37 |
+
|
38 |
+
@register_to_config
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
sample_size: Optional[int] = None,
|
42 |
+
in_channels: int = 4,
|
43 |
+
out_channels: int = 4,
|
44 |
+
center_input_sample: bool = False,
|
45 |
+
flip_sin_to_cos: bool = True,
|
46 |
+
freq_shift: int = 0,
|
47 |
+
down_block_types: Tuple[str] = (
|
48 |
+
"CrossAttnDownBlock3D",
|
49 |
+
"CrossAttnDownBlock3D",
|
50 |
+
"CrossAttnDownBlock3D",
|
51 |
+
"DownBlock3D",
|
52 |
+
),
|
53 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
54 |
+
up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
|
55 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
56 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
57 |
+
layers_per_block: int = 2,
|
58 |
+
downsample_padding: int = 1,
|
59 |
+
mid_block_scale_factor: float = 1,
|
60 |
+
act_fn: str = "silu",
|
61 |
+
norm_num_groups: int = 32,
|
62 |
+
norm_eps: float = 1e-5,
|
63 |
+
cross_attention_dim: int = 1280,
|
64 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
65 |
+
dual_cross_attention: bool = False,
|
66 |
+
use_linear_projection: bool = False,
|
67 |
+
class_embed_type: Optional[str] = None,
|
68 |
+
num_class_embeds: Optional[int] = None,
|
69 |
+
upcast_attention: bool = False,
|
70 |
+
resnet_time_scale_shift: str = "default",
|
71 |
+
):
|
72 |
+
super().__init__()
|
73 |
+
|
74 |
+
self.sample_size = sample_size
|
75 |
+
time_embed_dim = block_out_channels[0] * 4
|
76 |
+
|
77 |
+
# input
|
78 |
+
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
79 |
+
|
80 |
+
# time
|
81 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
82 |
+
timestep_input_dim = block_out_channels[0]
|
83 |
+
|
84 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
85 |
+
|
86 |
+
# class embedding
|
87 |
+
if class_embed_type is None and num_class_embeds is not None:
|
88 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
89 |
+
elif class_embed_type == "timestep":
|
90 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
91 |
+
elif class_embed_type == "identity":
|
92 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
93 |
+
else:
|
94 |
+
self.class_embedding = None
|
95 |
+
|
96 |
+
self.down_blocks = nn.ModuleList([])
|
97 |
+
self.mid_block = None
|
98 |
+
self.up_blocks = nn.ModuleList([])
|
99 |
+
|
100 |
+
if isinstance(only_cross_attention, bool):
|
101 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
102 |
+
|
103 |
+
if isinstance(attention_head_dim, int):
|
104 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
105 |
+
|
106 |
+
# down
|
107 |
+
output_channel = block_out_channels[0]
|
108 |
+
for i, down_block_type in enumerate(down_block_types):
|
109 |
+
input_channel = output_channel
|
110 |
+
output_channel = block_out_channels[i]
|
111 |
+
is_final_block = i == len(block_out_channels) - 1
|
112 |
+
|
113 |
+
down_block = get_down_block(
|
114 |
+
down_block_type,
|
115 |
+
num_layers=layers_per_block,
|
116 |
+
in_channels=input_channel,
|
117 |
+
out_channels=output_channel,
|
118 |
+
temb_channels=time_embed_dim,
|
119 |
+
add_downsample=not is_final_block,
|
120 |
+
resnet_eps=norm_eps,
|
121 |
+
resnet_act_fn=act_fn,
|
122 |
+
resnet_groups=norm_num_groups,
|
123 |
+
cross_attention_dim=cross_attention_dim,
|
124 |
+
attn_num_head_channels=attention_head_dim[i],
|
125 |
+
downsample_padding=downsample_padding,
|
126 |
+
dual_cross_attention=dual_cross_attention,
|
127 |
+
use_linear_projection=use_linear_projection,
|
128 |
+
only_cross_attention=only_cross_attention[i],
|
129 |
+
upcast_attention=upcast_attention,
|
130 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
131 |
+
)
|
132 |
+
self.down_blocks.append(down_block)
|
133 |
+
|
134 |
+
# mid
|
135 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
136 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
137 |
+
in_channels=block_out_channels[-1],
|
138 |
+
temb_channels=time_embed_dim,
|
139 |
+
resnet_eps=norm_eps,
|
140 |
+
resnet_act_fn=act_fn,
|
141 |
+
output_scale_factor=mid_block_scale_factor,
|
142 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
143 |
+
cross_attention_dim=cross_attention_dim,
|
144 |
+
attn_num_head_channels=attention_head_dim[-1],
|
145 |
+
resnet_groups=norm_num_groups,
|
146 |
+
dual_cross_attention=dual_cross_attention,
|
147 |
+
use_linear_projection=use_linear_projection,
|
148 |
+
upcast_attention=upcast_attention,
|
149 |
+
)
|
150 |
+
else:
|
151 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
152 |
+
|
153 |
+
# count how many layers upsample the videos
|
154 |
+
self.num_upsamplers = 0
|
155 |
+
|
156 |
+
# up
|
157 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
158 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
159 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
160 |
+
output_channel = reversed_block_out_channels[0]
|
161 |
+
for i, up_block_type in enumerate(up_block_types):
|
162 |
+
is_final_block = i == len(block_out_channels) - 1
|
163 |
+
|
164 |
+
prev_output_channel = output_channel
|
165 |
+
output_channel = reversed_block_out_channels[i]
|
166 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
167 |
+
|
168 |
+
# add upsample block for all BUT final layer
|
169 |
+
if not is_final_block:
|
170 |
+
add_upsample = True
|
171 |
+
self.num_upsamplers += 1
|
172 |
+
else:
|
173 |
+
add_upsample = False
|
174 |
+
|
175 |
+
up_block = get_up_block(
|
176 |
+
up_block_type,
|
177 |
+
num_layers=layers_per_block + 1,
|
178 |
+
in_channels=input_channel,
|
179 |
+
out_channels=output_channel,
|
180 |
+
prev_output_channel=prev_output_channel,
|
181 |
+
temb_channels=time_embed_dim,
|
182 |
+
add_upsample=add_upsample,
|
183 |
+
resnet_eps=norm_eps,
|
184 |
+
resnet_act_fn=act_fn,
|
185 |
+
resnet_groups=norm_num_groups,
|
186 |
+
cross_attention_dim=cross_attention_dim,
|
187 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
188 |
+
dual_cross_attention=dual_cross_attention,
|
189 |
+
use_linear_projection=use_linear_projection,
|
190 |
+
only_cross_attention=only_cross_attention[i],
|
191 |
+
upcast_attention=upcast_attention,
|
192 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
193 |
+
)
|
194 |
+
self.up_blocks.append(up_block)
|
195 |
+
prev_output_channel = output_channel
|
196 |
+
|
197 |
+
# out
|
198 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
199 |
+
self.conv_act = nn.SiLU()
|
200 |
+
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
201 |
+
|
202 |
+
def set_attention_slice(self, slice_size):
|
203 |
+
r"""
|
204 |
+
Enable sliced attention computation.
|
205 |
+
|
206 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
207 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
211 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
212 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
213 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
214 |
+
must be a multiple of `slice_size`.
|
215 |
+
"""
|
216 |
+
sliceable_head_dims = []
|
217 |
+
|
218 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
219 |
+
if hasattr(module, "set_attention_slice"):
|
220 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
221 |
+
|
222 |
+
for child in module.children():
|
223 |
+
fn_recursive_retrieve_slicable_dims(child)
|
224 |
+
|
225 |
+
# retrieve number of attention layers
|
226 |
+
for module in self.children():
|
227 |
+
fn_recursive_retrieve_slicable_dims(module)
|
228 |
+
|
229 |
+
num_slicable_layers = len(sliceable_head_dims)
|
230 |
+
|
231 |
+
if slice_size == "auto":
|
232 |
+
# half the attention head size is usually a good trade-off between
|
233 |
+
# speed and memory
|
234 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
235 |
+
elif slice_size == "max":
|
236 |
+
# make smallest slice possible
|
237 |
+
slice_size = num_slicable_layers * [1]
|
238 |
+
|
239 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
240 |
+
|
241 |
+
if len(slice_size) != len(sliceable_head_dims):
|
242 |
+
raise ValueError(
|
243 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
244 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
245 |
+
)
|
246 |
+
|
247 |
+
for i in range(len(slice_size)):
|
248 |
+
size = slice_size[i]
|
249 |
+
dim = sliceable_head_dims[i]
|
250 |
+
if size is not None and size > dim:
|
251 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
252 |
+
|
253 |
+
# Recursively walk through all the children.
|
254 |
+
# Any children which exposes the set_attention_slice method
|
255 |
+
# gets the message
|
256 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
257 |
+
if hasattr(module, "set_attention_slice"):
|
258 |
+
module.set_attention_slice(slice_size.pop())
|
259 |
+
|
260 |
+
for child in module.children():
|
261 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
262 |
+
|
263 |
+
reversed_slice_size = list(reversed(slice_size))
|
264 |
+
for module in self.children():
|
265 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
266 |
+
|
267 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
268 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
269 |
+
module.gradient_checkpointing = value
|
270 |
+
|
271 |
+
def forward(
|
272 |
+
self,
|
273 |
+
sample: torch.FloatTensor,
|
274 |
+
timestep: Union[torch.Tensor, float, int],
|
275 |
+
encoder_hidden_states: torch.Tensor,
|
276 |
+
class_labels: Optional[torch.Tensor] = None,
|
277 |
+
attention_mask: Optional[torch.Tensor] = None,
|
278 |
+
return_dict: bool = True,
|
279 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
280 |
+
r"""
|
281 |
+
Args:
|
282 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
283 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
284 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
285 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
286 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
290 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
291 |
+
returning a tuple, the first element is the sample tensor.
|
292 |
+
"""
|
293 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
294 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
295 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
296 |
+
# on the fly if necessary.
|
297 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
298 |
+
|
299 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
300 |
+
forward_upsample_size = False
|
301 |
+
upsample_size = None
|
302 |
+
|
303 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
304 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
305 |
+
forward_upsample_size = True
|
306 |
+
|
307 |
+
# prepare attention_mask
|
308 |
+
if attention_mask is not None:
|
309 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
310 |
+
attention_mask = attention_mask.unsqueeze(1)
|
311 |
+
|
312 |
+
# center input if necessary
|
313 |
+
if self.config.center_input_sample:
|
314 |
+
sample = 2 * sample - 1.0
|
315 |
+
|
316 |
+
# time
|
317 |
+
timesteps = timestep
|
318 |
+
if not torch.is_tensor(timesteps):
|
319 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
320 |
+
is_mps = sample.device.type == "mps"
|
321 |
+
if isinstance(timestep, float):
|
322 |
+
dtype = torch.float32 if is_mps else torch.float64
|
323 |
+
else:
|
324 |
+
dtype = torch.int32 if is_mps else torch.int64
|
325 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
326 |
+
elif len(timesteps.shape) == 0:
|
327 |
+
timesteps = timesteps[None].to(sample.device)
|
328 |
+
|
329 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
330 |
+
timesteps = timesteps.expand(sample.shape[0])
|
331 |
+
|
332 |
+
t_emb = self.time_proj(timesteps)
|
333 |
+
|
334 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
335 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
336 |
+
# there might be better ways to encapsulate this.
|
337 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
338 |
+
emb = self.time_embedding(t_emb)
|
339 |
+
|
340 |
+
if self.class_embedding is not None:
|
341 |
+
if class_labels is None:
|
342 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
343 |
+
|
344 |
+
if self.config.class_embed_type == "timestep":
|
345 |
+
class_labels = self.time_proj(class_labels)
|
346 |
+
|
347 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
348 |
+
emb = emb + class_emb
|
349 |
+
|
350 |
+
# pre-process
|
351 |
+
sample = self.conv_in(sample)
|
352 |
+
|
353 |
+
# down
|
354 |
+
down_block_res_samples = (sample,)
|
355 |
+
for downsample_block in self.down_blocks:
|
356 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
357 |
+
sample, res_samples = downsample_block(
|
358 |
+
hidden_states=sample,
|
359 |
+
temb=emb,
|
360 |
+
encoder_hidden_states=encoder_hidden_states,
|
361 |
+
attention_mask=attention_mask,
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
365 |
+
|
366 |
+
down_block_res_samples += res_samples
|
367 |
+
|
368 |
+
# mid
|
369 |
+
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask)
|
370 |
+
|
371 |
+
# up
|
372 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
373 |
+
is_final_block = i == len(self.up_blocks) - 1
|
374 |
+
|
375 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
376 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
377 |
+
|
378 |
+
# if we have not reached the final block and need to forward the
|
379 |
+
# upsample size, we do it here
|
380 |
+
if not is_final_block and forward_upsample_size:
|
381 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
382 |
+
|
383 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
384 |
+
sample = upsample_block(
|
385 |
+
hidden_states=sample,
|
386 |
+
temb=emb,
|
387 |
+
res_hidden_states_tuple=res_samples,
|
388 |
+
encoder_hidden_states=encoder_hidden_states,
|
389 |
+
upsample_size=upsample_size,
|
390 |
+
attention_mask=attention_mask,
|
391 |
+
)
|
392 |
+
else:
|
393 |
+
sample = upsample_block(
|
394 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
395 |
+
)
|
396 |
+
# post-process
|
397 |
+
sample = self.conv_norm_out(sample)
|
398 |
+
sample = self.conv_act(sample)
|
399 |
+
sample = self.conv_out(sample)
|
400 |
+
|
401 |
+
if not return_dict:
|
402 |
+
return (sample,)
|
403 |
+
|
404 |
+
return UNet3DConditionOutput(sample=sample)
|
405 |
+
|
406 |
+
@classmethod
|
407 |
+
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
|
408 |
+
if subfolder is not None:
|
409 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
410 |
+
|
411 |
+
config_file = os.path.join(pretrained_model_path, "config.json")
|
412 |
+
if not os.path.isfile(config_file):
|
413 |
+
raise RuntimeError(f"{config_file} does not exist")
|
414 |
+
with open(config_file, "r") as f:
|
415 |
+
config = json.load(f)
|
416 |
+
config["_class_name"] = cls.__name__
|
417 |
+
config["down_block_types"] = [
|
418 |
+
"CrossAttnDownBlock3D",
|
419 |
+
"CrossAttnDownBlock3D",
|
420 |
+
"CrossAttnDownBlock3D",
|
421 |
+
"DownBlock3D",
|
422 |
+
]
|
423 |
+
config["up_block_types"] = ["UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"]
|
424 |
+
|
425 |
+
from diffusers.utils import WEIGHTS_NAME
|
426 |
+
|
427 |
+
model = cls.from_config(config)
|
428 |
+
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
429 |
+
if not os.path.isfile(model_file):
|
430 |
+
raise RuntimeError(f"{model_file} does not exist")
|
431 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
432 |
+
for k, v in model.state_dict().items():
|
433 |
+
if "_temp." in k:
|
434 |
+
state_dict.update({k: v})
|
435 |
+
model.load_state_dict(state_dict)
|
436 |
+
|
437 |
+
return model
|
video_diffusion/tuneavideo/models/unet_blocks.py
ADDED
@@ -0,0 +1,588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
from .attention import Transformer3DModel
|
7 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
8 |
+
|
9 |
+
|
10 |
+
def get_down_block(
|
11 |
+
down_block_type,
|
12 |
+
num_layers,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
temb_channels,
|
16 |
+
add_downsample,
|
17 |
+
resnet_eps,
|
18 |
+
resnet_act_fn,
|
19 |
+
attn_num_head_channels,
|
20 |
+
resnet_groups=None,
|
21 |
+
cross_attention_dim=None,
|
22 |
+
downsample_padding=None,
|
23 |
+
dual_cross_attention=False,
|
24 |
+
use_linear_projection=False,
|
25 |
+
only_cross_attention=False,
|
26 |
+
upcast_attention=False,
|
27 |
+
resnet_time_scale_shift="default",
|
28 |
+
):
|
29 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
30 |
+
if down_block_type == "DownBlock3D":
|
31 |
+
return DownBlock3D(
|
32 |
+
num_layers=num_layers,
|
33 |
+
in_channels=in_channels,
|
34 |
+
out_channels=out_channels,
|
35 |
+
temb_channels=temb_channels,
|
36 |
+
add_downsample=add_downsample,
|
37 |
+
resnet_eps=resnet_eps,
|
38 |
+
resnet_act_fn=resnet_act_fn,
|
39 |
+
resnet_groups=resnet_groups,
|
40 |
+
downsample_padding=downsample_padding,
|
41 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
42 |
+
)
|
43 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
44 |
+
if cross_attention_dim is None:
|
45 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
46 |
+
return CrossAttnDownBlock3D(
|
47 |
+
num_layers=num_layers,
|
48 |
+
in_channels=in_channels,
|
49 |
+
out_channels=out_channels,
|
50 |
+
temb_channels=temb_channels,
|
51 |
+
add_downsample=add_downsample,
|
52 |
+
resnet_eps=resnet_eps,
|
53 |
+
resnet_act_fn=resnet_act_fn,
|
54 |
+
resnet_groups=resnet_groups,
|
55 |
+
downsample_padding=downsample_padding,
|
56 |
+
cross_attention_dim=cross_attention_dim,
|
57 |
+
attn_num_head_channels=attn_num_head_channels,
|
58 |
+
dual_cross_attention=dual_cross_attention,
|
59 |
+
use_linear_projection=use_linear_projection,
|
60 |
+
only_cross_attention=only_cross_attention,
|
61 |
+
upcast_attention=upcast_attention,
|
62 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
63 |
+
)
|
64 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
65 |
+
|
66 |
+
|
67 |
+
def get_up_block(
|
68 |
+
up_block_type,
|
69 |
+
num_layers,
|
70 |
+
in_channels,
|
71 |
+
out_channels,
|
72 |
+
prev_output_channel,
|
73 |
+
temb_channels,
|
74 |
+
add_upsample,
|
75 |
+
resnet_eps,
|
76 |
+
resnet_act_fn,
|
77 |
+
attn_num_head_channels,
|
78 |
+
resnet_groups=None,
|
79 |
+
cross_attention_dim=None,
|
80 |
+
dual_cross_attention=False,
|
81 |
+
use_linear_projection=False,
|
82 |
+
only_cross_attention=False,
|
83 |
+
upcast_attention=False,
|
84 |
+
resnet_time_scale_shift="default",
|
85 |
+
):
|
86 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
87 |
+
if up_block_type == "UpBlock3D":
|
88 |
+
return UpBlock3D(
|
89 |
+
num_layers=num_layers,
|
90 |
+
in_channels=in_channels,
|
91 |
+
out_channels=out_channels,
|
92 |
+
prev_output_channel=prev_output_channel,
|
93 |
+
temb_channels=temb_channels,
|
94 |
+
add_upsample=add_upsample,
|
95 |
+
resnet_eps=resnet_eps,
|
96 |
+
resnet_act_fn=resnet_act_fn,
|
97 |
+
resnet_groups=resnet_groups,
|
98 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
99 |
+
)
|
100 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
101 |
+
if cross_attention_dim is None:
|
102 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
103 |
+
return CrossAttnUpBlock3D(
|
104 |
+
num_layers=num_layers,
|
105 |
+
in_channels=in_channels,
|
106 |
+
out_channels=out_channels,
|
107 |
+
prev_output_channel=prev_output_channel,
|
108 |
+
temb_channels=temb_channels,
|
109 |
+
add_upsample=add_upsample,
|
110 |
+
resnet_eps=resnet_eps,
|
111 |
+
resnet_act_fn=resnet_act_fn,
|
112 |
+
resnet_groups=resnet_groups,
|
113 |
+
cross_attention_dim=cross_attention_dim,
|
114 |
+
attn_num_head_channels=attn_num_head_channels,
|
115 |
+
dual_cross_attention=dual_cross_attention,
|
116 |
+
use_linear_projection=use_linear_projection,
|
117 |
+
only_cross_attention=only_cross_attention,
|
118 |
+
upcast_attention=upcast_attention,
|
119 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
120 |
+
)
|
121 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
122 |
+
|
123 |
+
|
124 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
in_channels: int,
|
128 |
+
temb_channels: int,
|
129 |
+
dropout: float = 0.0,
|
130 |
+
num_layers: int = 1,
|
131 |
+
resnet_eps: float = 1e-6,
|
132 |
+
resnet_time_scale_shift: str = "default",
|
133 |
+
resnet_act_fn: str = "swish",
|
134 |
+
resnet_groups: int = 32,
|
135 |
+
resnet_pre_norm: bool = True,
|
136 |
+
attn_num_head_channels=1,
|
137 |
+
output_scale_factor=1.0,
|
138 |
+
cross_attention_dim=1280,
|
139 |
+
dual_cross_attention=False,
|
140 |
+
use_linear_projection=False,
|
141 |
+
upcast_attention=False,
|
142 |
+
):
|
143 |
+
super().__init__()
|
144 |
+
|
145 |
+
self.has_cross_attention = True
|
146 |
+
self.attn_num_head_channels = attn_num_head_channels
|
147 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
148 |
+
|
149 |
+
# there is always at least one resnet
|
150 |
+
resnets = [
|
151 |
+
ResnetBlock3D(
|
152 |
+
in_channels=in_channels,
|
153 |
+
out_channels=in_channels,
|
154 |
+
temb_channels=temb_channels,
|
155 |
+
eps=resnet_eps,
|
156 |
+
groups=resnet_groups,
|
157 |
+
dropout=dropout,
|
158 |
+
time_embedding_norm=resnet_time_scale_shift,
|
159 |
+
non_linearity=resnet_act_fn,
|
160 |
+
output_scale_factor=output_scale_factor,
|
161 |
+
pre_norm=resnet_pre_norm,
|
162 |
+
)
|
163 |
+
]
|
164 |
+
attentions = []
|
165 |
+
|
166 |
+
for _ in range(num_layers):
|
167 |
+
if dual_cross_attention:
|
168 |
+
raise NotImplementedError
|
169 |
+
attentions.append(
|
170 |
+
Transformer3DModel(
|
171 |
+
attn_num_head_channels,
|
172 |
+
in_channels // attn_num_head_channels,
|
173 |
+
in_channels=in_channels,
|
174 |
+
num_layers=1,
|
175 |
+
cross_attention_dim=cross_attention_dim,
|
176 |
+
norm_num_groups=resnet_groups,
|
177 |
+
use_linear_projection=use_linear_projection,
|
178 |
+
upcast_attention=upcast_attention,
|
179 |
+
)
|
180 |
+
)
|
181 |
+
resnets.append(
|
182 |
+
ResnetBlock3D(
|
183 |
+
in_channels=in_channels,
|
184 |
+
out_channels=in_channels,
|
185 |
+
temb_channels=temb_channels,
|
186 |
+
eps=resnet_eps,
|
187 |
+
groups=resnet_groups,
|
188 |
+
dropout=dropout,
|
189 |
+
time_embedding_norm=resnet_time_scale_shift,
|
190 |
+
non_linearity=resnet_act_fn,
|
191 |
+
output_scale_factor=output_scale_factor,
|
192 |
+
pre_norm=resnet_pre_norm,
|
193 |
+
)
|
194 |
+
)
|
195 |
+
|
196 |
+
self.attentions = nn.ModuleList(attentions)
|
197 |
+
self.resnets = nn.ModuleList(resnets)
|
198 |
+
|
199 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
200 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
201 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
202 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
203 |
+
hidden_states = resnet(hidden_states, temb)
|
204 |
+
|
205 |
+
return hidden_states
|
206 |
+
|
207 |
+
|
208 |
+
class CrossAttnDownBlock3D(nn.Module):
|
209 |
+
def __init__(
|
210 |
+
self,
|
211 |
+
in_channels: int,
|
212 |
+
out_channels: int,
|
213 |
+
temb_channels: int,
|
214 |
+
dropout: float = 0.0,
|
215 |
+
num_layers: int = 1,
|
216 |
+
resnet_eps: float = 1e-6,
|
217 |
+
resnet_time_scale_shift: str = "default",
|
218 |
+
resnet_act_fn: str = "swish",
|
219 |
+
resnet_groups: int = 32,
|
220 |
+
resnet_pre_norm: bool = True,
|
221 |
+
attn_num_head_channels=1,
|
222 |
+
cross_attention_dim=1280,
|
223 |
+
output_scale_factor=1.0,
|
224 |
+
downsample_padding=1,
|
225 |
+
add_downsample=True,
|
226 |
+
dual_cross_attention=False,
|
227 |
+
use_linear_projection=False,
|
228 |
+
only_cross_attention=False,
|
229 |
+
upcast_attention=False,
|
230 |
+
):
|
231 |
+
super().__init__()
|
232 |
+
resnets = []
|
233 |
+
attentions = []
|
234 |
+
|
235 |
+
self.has_cross_attention = True
|
236 |
+
self.attn_num_head_channels = attn_num_head_channels
|
237 |
+
|
238 |
+
for i in range(num_layers):
|
239 |
+
in_channels = in_channels if i == 0 else out_channels
|
240 |
+
resnets.append(
|
241 |
+
ResnetBlock3D(
|
242 |
+
in_channels=in_channels,
|
243 |
+
out_channels=out_channels,
|
244 |
+
temb_channels=temb_channels,
|
245 |
+
eps=resnet_eps,
|
246 |
+
groups=resnet_groups,
|
247 |
+
dropout=dropout,
|
248 |
+
time_embedding_norm=resnet_time_scale_shift,
|
249 |
+
non_linearity=resnet_act_fn,
|
250 |
+
output_scale_factor=output_scale_factor,
|
251 |
+
pre_norm=resnet_pre_norm,
|
252 |
+
)
|
253 |
+
)
|
254 |
+
if dual_cross_attention:
|
255 |
+
raise NotImplementedError
|
256 |
+
attentions.append(
|
257 |
+
Transformer3DModel(
|
258 |
+
attn_num_head_channels,
|
259 |
+
out_channels // attn_num_head_channels,
|
260 |
+
in_channels=out_channels,
|
261 |
+
num_layers=1,
|
262 |
+
cross_attention_dim=cross_attention_dim,
|
263 |
+
norm_num_groups=resnet_groups,
|
264 |
+
use_linear_projection=use_linear_projection,
|
265 |
+
only_cross_attention=only_cross_attention,
|
266 |
+
upcast_attention=upcast_attention,
|
267 |
+
)
|
268 |
+
)
|
269 |
+
self.attentions = nn.ModuleList(attentions)
|
270 |
+
self.resnets = nn.ModuleList(resnets)
|
271 |
+
|
272 |
+
if add_downsample:
|
273 |
+
self.downsamplers = nn.ModuleList(
|
274 |
+
[
|
275 |
+
Downsample3D(
|
276 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
277 |
+
)
|
278 |
+
]
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
self.downsamplers = None
|
282 |
+
|
283 |
+
self.gradient_checkpointing = False
|
284 |
+
|
285 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
286 |
+
output_states = ()
|
287 |
+
|
288 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
289 |
+
if self.training and self.gradient_checkpointing:
|
290 |
+
|
291 |
+
def create_custom_forward(module, return_dict=None):
|
292 |
+
def custom_forward(*inputs):
|
293 |
+
if return_dict is not None:
|
294 |
+
return module(*inputs, return_dict=return_dict)
|
295 |
+
else:
|
296 |
+
return module(*inputs)
|
297 |
+
|
298 |
+
return custom_forward
|
299 |
+
|
300 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
301 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
302 |
+
create_custom_forward(attn, return_dict=False),
|
303 |
+
hidden_states,
|
304 |
+
encoder_hidden_states,
|
305 |
+
)[0]
|
306 |
+
else:
|
307 |
+
hidden_states = resnet(hidden_states, temb)
|
308 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
309 |
+
|
310 |
+
output_states += (hidden_states,)
|
311 |
+
|
312 |
+
if self.downsamplers is not None:
|
313 |
+
for downsampler in self.downsamplers:
|
314 |
+
hidden_states = downsampler(hidden_states)
|
315 |
+
|
316 |
+
output_states += (hidden_states,)
|
317 |
+
|
318 |
+
return hidden_states, output_states
|
319 |
+
|
320 |
+
|
321 |
+
class DownBlock3D(nn.Module):
|
322 |
+
def __init__(
|
323 |
+
self,
|
324 |
+
in_channels: int,
|
325 |
+
out_channels: int,
|
326 |
+
temb_channels: int,
|
327 |
+
dropout: float = 0.0,
|
328 |
+
num_layers: int = 1,
|
329 |
+
resnet_eps: float = 1e-6,
|
330 |
+
resnet_time_scale_shift: str = "default",
|
331 |
+
resnet_act_fn: str = "swish",
|
332 |
+
resnet_groups: int = 32,
|
333 |
+
resnet_pre_norm: bool = True,
|
334 |
+
output_scale_factor=1.0,
|
335 |
+
add_downsample=True,
|
336 |
+
downsample_padding=1,
|
337 |
+
):
|
338 |
+
super().__init__()
|
339 |
+
resnets = []
|
340 |
+
|
341 |
+
for i in range(num_layers):
|
342 |
+
in_channels = in_channels if i == 0 else out_channels
|
343 |
+
resnets.append(
|
344 |
+
ResnetBlock3D(
|
345 |
+
in_channels=in_channels,
|
346 |
+
out_channels=out_channels,
|
347 |
+
temb_channels=temb_channels,
|
348 |
+
eps=resnet_eps,
|
349 |
+
groups=resnet_groups,
|
350 |
+
dropout=dropout,
|
351 |
+
time_embedding_norm=resnet_time_scale_shift,
|
352 |
+
non_linearity=resnet_act_fn,
|
353 |
+
output_scale_factor=output_scale_factor,
|
354 |
+
pre_norm=resnet_pre_norm,
|
355 |
+
)
|
356 |
+
)
|
357 |
+
|
358 |
+
self.resnets = nn.ModuleList(resnets)
|
359 |
+
|
360 |
+
if add_downsample:
|
361 |
+
self.downsamplers = nn.ModuleList(
|
362 |
+
[
|
363 |
+
Downsample3D(
|
364 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
365 |
+
)
|
366 |
+
]
|
367 |
+
)
|
368 |
+
else:
|
369 |
+
self.downsamplers = None
|
370 |
+
|
371 |
+
self.gradient_checkpointing = False
|
372 |
+
|
373 |
+
def forward(self, hidden_states, temb=None):
|
374 |
+
output_states = ()
|
375 |
+
|
376 |
+
for resnet in self.resnets:
|
377 |
+
if self.training and self.gradient_checkpointing:
|
378 |
+
|
379 |
+
def create_custom_forward(module):
|
380 |
+
def custom_forward(*inputs):
|
381 |
+
return module(*inputs)
|
382 |
+
|
383 |
+
return custom_forward
|
384 |
+
|
385 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
386 |
+
else:
|
387 |
+
hidden_states = resnet(hidden_states, temb)
|
388 |
+
|
389 |
+
output_states += (hidden_states,)
|
390 |
+
|
391 |
+
if self.downsamplers is not None:
|
392 |
+
for downsampler in self.downsamplers:
|
393 |
+
hidden_states = downsampler(hidden_states)
|
394 |
+
|
395 |
+
output_states += (hidden_states,)
|
396 |
+
|
397 |
+
return hidden_states, output_states
|
398 |
+
|
399 |
+
|
400 |
+
class CrossAttnUpBlock3D(nn.Module):
|
401 |
+
def __init__(
|
402 |
+
self,
|
403 |
+
in_channels: int,
|
404 |
+
out_channels: int,
|
405 |
+
prev_output_channel: int,
|
406 |
+
temb_channels: int,
|
407 |
+
dropout: float = 0.0,
|
408 |
+
num_layers: int = 1,
|
409 |
+
resnet_eps: float = 1e-6,
|
410 |
+
resnet_time_scale_shift: str = "default",
|
411 |
+
resnet_act_fn: str = "swish",
|
412 |
+
resnet_groups: int = 32,
|
413 |
+
resnet_pre_norm: bool = True,
|
414 |
+
attn_num_head_channels=1,
|
415 |
+
cross_attention_dim=1280,
|
416 |
+
output_scale_factor=1.0,
|
417 |
+
add_upsample=True,
|
418 |
+
dual_cross_attention=False,
|
419 |
+
use_linear_projection=False,
|
420 |
+
only_cross_attention=False,
|
421 |
+
upcast_attention=False,
|
422 |
+
):
|
423 |
+
super().__init__()
|
424 |
+
resnets = []
|
425 |
+
attentions = []
|
426 |
+
|
427 |
+
self.has_cross_attention = True
|
428 |
+
self.attn_num_head_channels = attn_num_head_channels
|
429 |
+
|
430 |
+
for i in range(num_layers):
|
431 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
432 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
433 |
+
|
434 |
+
resnets.append(
|
435 |
+
ResnetBlock3D(
|
436 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
437 |
+
out_channels=out_channels,
|
438 |
+
temb_channels=temb_channels,
|
439 |
+
eps=resnet_eps,
|
440 |
+
groups=resnet_groups,
|
441 |
+
dropout=dropout,
|
442 |
+
time_embedding_norm=resnet_time_scale_shift,
|
443 |
+
non_linearity=resnet_act_fn,
|
444 |
+
output_scale_factor=output_scale_factor,
|
445 |
+
pre_norm=resnet_pre_norm,
|
446 |
+
)
|
447 |
+
)
|
448 |
+
if dual_cross_attention:
|
449 |
+
raise NotImplementedError
|
450 |
+
attentions.append(
|
451 |
+
Transformer3DModel(
|
452 |
+
attn_num_head_channels,
|
453 |
+
out_channels // attn_num_head_channels,
|
454 |
+
in_channels=out_channels,
|
455 |
+
num_layers=1,
|
456 |
+
cross_attention_dim=cross_attention_dim,
|
457 |
+
norm_num_groups=resnet_groups,
|
458 |
+
use_linear_projection=use_linear_projection,
|
459 |
+
only_cross_attention=only_cross_attention,
|
460 |
+
upcast_attention=upcast_attention,
|
461 |
+
)
|
462 |
+
)
|
463 |
+
|
464 |
+
self.attentions = nn.ModuleList(attentions)
|
465 |
+
self.resnets = nn.ModuleList(resnets)
|
466 |
+
|
467 |
+
if add_upsample:
|
468 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
469 |
+
else:
|
470 |
+
self.upsamplers = None
|
471 |
+
|
472 |
+
self.gradient_checkpointing = False
|
473 |
+
|
474 |
+
def forward(
|
475 |
+
self,
|
476 |
+
hidden_states,
|
477 |
+
res_hidden_states_tuple,
|
478 |
+
temb=None,
|
479 |
+
encoder_hidden_states=None,
|
480 |
+
upsample_size=None,
|
481 |
+
attention_mask=None,
|
482 |
+
):
|
483 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
484 |
+
# pop res hidden states
|
485 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
486 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
487 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
488 |
+
|
489 |
+
if self.training and self.gradient_checkpointing:
|
490 |
+
|
491 |
+
def create_custom_forward(module, return_dict=None):
|
492 |
+
def custom_forward(*inputs):
|
493 |
+
if return_dict is not None:
|
494 |
+
return module(*inputs, return_dict=return_dict)
|
495 |
+
else:
|
496 |
+
return module(*inputs)
|
497 |
+
|
498 |
+
return custom_forward
|
499 |
+
|
500 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
501 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
502 |
+
create_custom_forward(attn, return_dict=False),
|
503 |
+
hidden_states,
|
504 |
+
encoder_hidden_states,
|
505 |
+
)[0]
|
506 |
+
else:
|
507 |
+
hidden_states = resnet(hidden_states, temb)
|
508 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
509 |
+
|
510 |
+
if self.upsamplers is not None:
|
511 |
+
for upsampler in self.upsamplers:
|
512 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
513 |
+
|
514 |
+
return hidden_states
|
515 |
+
|
516 |
+
|
517 |
+
class UpBlock3D(nn.Module):
|
518 |
+
def __init__(
|
519 |
+
self,
|
520 |
+
in_channels: int,
|
521 |
+
prev_output_channel: int,
|
522 |
+
out_channels: int,
|
523 |
+
temb_channels: int,
|
524 |
+
dropout: float = 0.0,
|
525 |
+
num_layers: int = 1,
|
526 |
+
resnet_eps: float = 1e-6,
|
527 |
+
resnet_time_scale_shift: str = "default",
|
528 |
+
resnet_act_fn: str = "swish",
|
529 |
+
resnet_groups: int = 32,
|
530 |
+
resnet_pre_norm: bool = True,
|
531 |
+
output_scale_factor=1.0,
|
532 |
+
add_upsample=True,
|
533 |
+
):
|
534 |
+
super().__init__()
|
535 |
+
resnets = []
|
536 |
+
|
537 |
+
for i in range(num_layers):
|
538 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
539 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
540 |
+
|
541 |
+
resnets.append(
|
542 |
+
ResnetBlock3D(
|
543 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
544 |
+
out_channels=out_channels,
|
545 |
+
temb_channels=temb_channels,
|
546 |
+
eps=resnet_eps,
|
547 |
+
groups=resnet_groups,
|
548 |
+
dropout=dropout,
|
549 |
+
time_embedding_norm=resnet_time_scale_shift,
|
550 |
+
non_linearity=resnet_act_fn,
|
551 |
+
output_scale_factor=output_scale_factor,
|
552 |
+
pre_norm=resnet_pre_norm,
|
553 |
+
)
|
554 |
+
)
|
555 |
+
|
556 |
+
self.resnets = nn.ModuleList(resnets)
|
557 |
+
|
558 |
+
if add_upsample:
|
559 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
560 |
+
else:
|
561 |
+
self.upsamplers = None
|
562 |
+
|
563 |
+
self.gradient_checkpointing = False
|
564 |
+
|
565 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
566 |
+
for resnet in self.resnets:
|
567 |
+
# pop res hidden states
|
568 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
569 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
570 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
571 |
+
|
572 |
+
if self.training and self.gradient_checkpointing:
|
573 |
+
|
574 |
+
def create_custom_forward(module):
|
575 |
+
def custom_forward(*inputs):
|
576 |
+
return module(*inputs)
|
577 |
+
|
578 |
+
return custom_forward
|
579 |
+
|
580 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
581 |
+
else:
|
582 |
+
hidden_states = resnet(hidden_states, temb)
|
583 |
+
|
584 |
+
if self.upsamplers is not None:
|
585 |
+
for upsampler in self.upsamplers:
|
586 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
587 |
+
|
588 |
+
return hidden_states
|
video_diffusion/tuneavideo/pipelines/pipeline_tuneavideo.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from diffusers.configuration_utils import FrozenDict
|
10 |
+
from diffusers.models import AutoencoderKL
|
11 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
12 |
+
from diffusers.schedulers import (
|
13 |
+
DDIMScheduler,
|
14 |
+
DPMSolverMultistepScheduler,
|
15 |
+
EulerAncestralDiscreteScheduler,
|
16 |
+
EulerDiscreteScheduler,
|
17 |
+
LMSDiscreteScheduler,
|
18 |
+
PNDMScheduler,
|
19 |
+
)
|
20 |
+
from diffusers.utils import BaseOutput, deprecate, is_accelerate_available, logging
|
21 |
+
from einops import rearrange
|
22 |
+
from packaging import version
|
23 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
24 |
+
|
25 |
+
from ..models.unet import UNet3DConditionModel
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class TuneAVideoPipelineOutput(BaseOutput):
|
32 |
+
videos: Union[torch.Tensor, np.ndarray]
|
33 |
+
|
34 |
+
|
35 |
+
class TuneAVideoPipeline(DiffusionPipeline):
|
36 |
+
_optional_components = []
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
vae: AutoencoderKL,
|
41 |
+
text_encoder: CLIPTextModel,
|
42 |
+
tokenizer: CLIPTokenizer,
|
43 |
+
unet: UNet3DConditionModel,
|
44 |
+
scheduler: Union[
|
45 |
+
DDIMScheduler,
|
46 |
+
PNDMScheduler,
|
47 |
+
LMSDiscreteScheduler,
|
48 |
+
EulerDiscreteScheduler,
|
49 |
+
EulerAncestralDiscreteScheduler,
|
50 |
+
DPMSolverMultistepScheduler,
|
51 |
+
],
|
52 |
+
):
|
53 |
+
super().__init__()
|
54 |
+
|
55 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
56 |
+
deprecation_message = (
|
57 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
58 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
59 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
60 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
61 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
62 |
+
" file"
|
63 |
+
)
|
64 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
65 |
+
new_config = dict(scheduler.config)
|
66 |
+
new_config["steps_offset"] = 1
|
67 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
68 |
+
|
69 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
70 |
+
deprecation_message = (
|
71 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
72 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
73 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
74 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
75 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
76 |
+
)
|
77 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
78 |
+
new_config = dict(scheduler.config)
|
79 |
+
new_config["clip_sample"] = False
|
80 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
81 |
+
|
82 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
83 |
+
version.parse(unet.config._diffusers_version).base_version
|
84 |
+
) < version.parse("0.9.0.dev0")
|
85 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
86 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
87 |
+
deprecation_message = (
|
88 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
89 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
90 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
91 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
92 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
93 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
94 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
95 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
96 |
+
" the `unet/config.json` file"
|
97 |
+
)
|
98 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
99 |
+
new_config = dict(unet.config)
|
100 |
+
new_config["sample_size"] = 64
|
101 |
+
unet._internal_dict = FrozenDict(new_config)
|
102 |
+
|
103 |
+
self.register_modules(
|
104 |
+
vae=vae,
|
105 |
+
text_encoder=text_encoder,
|
106 |
+
tokenizer=tokenizer,
|
107 |
+
unet=unet,
|
108 |
+
scheduler=scheduler,
|
109 |
+
)
|
110 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
111 |
+
|
112 |
+
def enable_vae_slicing(self):
|
113 |
+
self.vae.enable_slicing()
|
114 |
+
|
115 |
+
def disable_vae_slicing(self):
|
116 |
+
self.vae.disable_slicing()
|
117 |
+
|
118 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
119 |
+
if is_accelerate_available():
|
120 |
+
from accelerate import cpu_offload
|
121 |
+
else:
|
122 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
123 |
+
|
124 |
+
device = torch.device(f"cuda:{gpu_id}")
|
125 |
+
|
126 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
127 |
+
if cpu_offloaded_model is not None:
|
128 |
+
cpu_offload(cpu_offloaded_model, device)
|
129 |
+
|
130 |
+
@property
|
131 |
+
def _execution_device(self):
|
132 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
133 |
+
return self.device
|
134 |
+
for module in self.unet.modules():
|
135 |
+
if (
|
136 |
+
hasattr(module, "_hf_hook")
|
137 |
+
and hasattr(module._hf_hook, "execution_device")
|
138 |
+
and module._hf_hook.execution_device is not None
|
139 |
+
):
|
140 |
+
return torch.device(module._hf_hook.execution_device)
|
141 |
+
return self.device
|
142 |
+
|
143 |
+
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
|
144 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
145 |
+
|
146 |
+
text_inputs = self.tokenizer(
|
147 |
+
prompt,
|
148 |
+
padding="max_length",
|
149 |
+
max_length=self.tokenizer.model_max_length,
|
150 |
+
truncation=True,
|
151 |
+
return_tensors="pt",
|
152 |
+
)
|
153 |
+
text_input_ids = text_inputs.input_ids
|
154 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
155 |
+
|
156 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
157 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
158 |
+
logger.warning(
|
159 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
160 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
161 |
+
)
|
162 |
+
|
163 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
164 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
165 |
+
else:
|
166 |
+
attention_mask = None
|
167 |
+
|
168 |
+
text_embeddings = self.text_encoder(
|
169 |
+
text_input_ids.to(device),
|
170 |
+
attention_mask=attention_mask,
|
171 |
+
)
|
172 |
+
text_embeddings = text_embeddings[0]
|
173 |
+
|
174 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
175 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
176 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
177 |
+
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
178 |
+
|
179 |
+
# get unconditional embeddings for classifier free guidance
|
180 |
+
if do_classifier_free_guidance:
|
181 |
+
uncond_tokens: List[str]
|
182 |
+
if negative_prompt is None:
|
183 |
+
uncond_tokens = [""] * batch_size
|
184 |
+
elif type(prompt) is not type(negative_prompt):
|
185 |
+
raise TypeError(
|
186 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
187 |
+
f" {type(prompt)}."
|
188 |
+
)
|
189 |
+
elif isinstance(negative_prompt, str):
|
190 |
+
uncond_tokens = [negative_prompt]
|
191 |
+
elif batch_size != len(negative_prompt):
|
192 |
+
raise ValueError(
|
193 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
194 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
195 |
+
" the batch size of `prompt`."
|
196 |
+
)
|
197 |
+
else:
|
198 |
+
uncond_tokens = negative_prompt
|
199 |
+
|
200 |
+
max_length = text_input_ids.shape[-1]
|
201 |
+
uncond_input = self.tokenizer(
|
202 |
+
uncond_tokens,
|
203 |
+
padding="max_length",
|
204 |
+
max_length=max_length,
|
205 |
+
truncation=True,
|
206 |
+
return_tensors="pt",
|
207 |
+
)
|
208 |
+
|
209 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
210 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
211 |
+
else:
|
212 |
+
attention_mask = None
|
213 |
+
|
214 |
+
uncond_embeddings = self.text_encoder(
|
215 |
+
uncond_input.input_ids.to(device),
|
216 |
+
attention_mask=attention_mask,
|
217 |
+
)
|
218 |
+
uncond_embeddings = uncond_embeddings[0]
|
219 |
+
|
220 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
221 |
+
seq_len = uncond_embeddings.shape[1]
|
222 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
223 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
224 |
+
|
225 |
+
# For classifier free guidance, we need to do two forward passes.
|
226 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
227 |
+
# to avoid doing two forward passes
|
228 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
229 |
+
|
230 |
+
return text_embeddings
|
231 |
+
|
232 |
+
def decode_latents(self, latents):
|
233 |
+
video_length = latents.shape[2]
|
234 |
+
latents = 1 / 0.18215 * latents
|
235 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
236 |
+
video = self.vae.decode(latents).sample
|
237 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
238 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
239 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
240 |
+
video = video.cpu().float().numpy()
|
241 |
+
return video
|
242 |
+
|
243 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
244 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
245 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
246 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
247 |
+
# and should be between [0, 1]
|
248 |
+
|
249 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
250 |
+
extra_step_kwargs = {}
|
251 |
+
if accepts_eta:
|
252 |
+
extra_step_kwargs["eta"] = eta
|
253 |
+
|
254 |
+
# check if the scheduler accepts generator
|
255 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
256 |
+
if accepts_generator:
|
257 |
+
extra_step_kwargs["generator"] = generator
|
258 |
+
return extra_step_kwargs
|
259 |
+
|
260 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
261 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
262 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
263 |
+
|
264 |
+
if height % 8 != 0 or width % 8 != 0:
|
265 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
266 |
+
|
267 |
+
if (callback_steps is None) or (
|
268 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
269 |
+
):
|
270 |
+
raise ValueError(
|
271 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
272 |
+
f" {type(callback_steps)}."
|
273 |
+
)
|
274 |
+
|
275 |
+
def prepare_latents(
|
276 |
+
self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None
|
277 |
+
):
|
278 |
+
shape = (
|
279 |
+
batch_size,
|
280 |
+
num_channels_latents,
|
281 |
+
video_length,
|
282 |
+
height // self.vae_scale_factor,
|
283 |
+
width // self.vae_scale_factor,
|
284 |
+
)
|
285 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
286 |
+
raise ValueError(
|
287 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
288 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
289 |
+
)
|
290 |
+
|
291 |
+
if latents is None:
|
292 |
+
rand_device = "cpu" if device.type == "mps" else device
|
293 |
+
|
294 |
+
if isinstance(generator, list):
|
295 |
+
shape = (1,) + shape[1:]
|
296 |
+
latents = [
|
297 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
298 |
+
for i in range(batch_size)
|
299 |
+
]
|
300 |
+
latents = torch.cat(latents, dim=0).to(device)
|
301 |
+
else:
|
302 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
303 |
+
else:
|
304 |
+
if latents.shape != shape:
|
305 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
306 |
+
latents = latents.to(device)
|
307 |
+
|
308 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
309 |
+
latents = latents * self.scheduler.init_noise_sigma
|
310 |
+
return latents
|
311 |
+
|
312 |
+
@torch.no_grad()
|
313 |
+
def __call__(
|
314 |
+
self,
|
315 |
+
prompt: Union[str, List[str]],
|
316 |
+
video_length: Optional[int],
|
317 |
+
height: Optional[int] = None,
|
318 |
+
width: Optional[int] = None,
|
319 |
+
num_inference_steps: int = 50,
|
320 |
+
guidance_scale: float = 7.5,
|
321 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
322 |
+
num_videos_per_prompt: Optional[int] = 1,
|
323 |
+
eta: float = 0.0,
|
324 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
325 |
+
latents: Optional[torch.FloatTensor] = None,
|
326 |
+
output_type: Optional[str] = "tensor",
|
327 |
+
return_dict: bool = True,
|
328 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
329 |
+
callback_steps: Optional[int] = 1,
|
330 |
+
**kwargs,
|
331 |
+
):
|
332 |
+
# Default height and width to unet
|
333 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
334 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
335 |
+
|
336 |
+
# Check inputs. Raise error if not correct
|
337 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
338 |
+
|
339 |
+
# Define call parameters
|
340 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
341 |
+
device = self._execution_device
|
342 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
343 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
344 |
+
# corresponds to doing no classifier free guidance.
|
345 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
346 |
+
|
347 |
+
# Encode input prompt
|
348 |
+
text_embeddings = self._encode_prompt(
|
349 |
+
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
350 |
+
)
|
351 |
+
|
352 |
+
# Prepare timesteps
|
353 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
354 |
+
timesteps = self.scheduler.timesteps
|
355 |
+
|
356 |
+
# Prepare latent variables
|
357 |
+
num_channels_latents = self.unet.in_channels
|
358 |
+
latents = self.prepare_latents(
|
359 |
+
batch_size * num_videos_per_prompt,
|
360 |
+
num_channels_latents,
|
361 |
+
video_length,
|
362 |
+
height,
|
363 |
+
width,
|
364 |
+
text_embeddings.dtype,
|
365 |
+
device,
|
366 |
+
generator,
|
367 |
+
latents,
|
368 |
+
)
|
369 |
+
latents_dtype = latents.dtype
|
370 |
+
|
371 |
+
# Prepare extra step kwargs.
|
372 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
373 |
+
|
374 |
+
# Denoising loop
|
375 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
376 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
377 |
+
for i, t in enumerate(timesteps):
|
378 |
+
# expand the latents if we are doing classifier free guidance
|
379 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
380 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
381 |
+
|
382 |
+
# predict the noise residual
|
383 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(
|
384 |
+
dtype=latents_dtype
|
385 |
+
)
|
386 |
+
|
387 |
+
# perform guidance
|
388 |
+
if do_classifier_free_guidance:
|
389 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
390 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
391 |
+
|
392 |
+
# compute the previous noisy sample x_t -> x_t-1
|
393 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
394 |
+
|
395 |
+
# call the callback, if provided
|
396 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
397 |
+
progress_bar.update()
|
398 |
+
if callback is not None and i % callback_steps == 0:
|
399 |
+
callback(i, t, latents)
|
400 |
+
|
401 |
+
# Post-processing
|
402 |
+
video = self.decode_latents(latents)
|
403 |
+
|
404 |
+
# Convert to tensor
|
405 |
+
if output_type == "tensor":
|
406 |
+
video = torch.from_numpy(video)
|
407 |
+
|
408 |
+
if not return_dict:
|
409 |
+
return video
|
410 |
+
|
411 |
+
return TuneAVideoPipelineOutput(videos=video)
|
video_diffusion/tuneavideo/tuneavideo_text2video.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from video_diffusion.tuneavideo.models.unet import UNet3DConditionModel
|
5 |
+
from video_diffusion.tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
6 |
+
from video_diffusion.tuneavideo.util import save_videos_grid
|
7 |
+
from video_diffusion.utils.model_list import stable_model_list
|
8 |
+
|
9 |
+
video_diffusion_model_list = [
|
10 |
+
"Tune-A-Video-library/a-man-is-surfing",
|
11 |
+
"Tune-A-Video-library/mo-di-bear-guitar",
|
12 |
+
"Tune-A-Video-library/redshift-man-skiing",
|
13 |
+
]
|
14 |
+
|
15 |
+
|
16 |
+
class TunaVideoText2VideoGenerator:
|
17 |
+
def __init__(self):
|
18 |
+
self.pipe = None
|
19 |
+
self.unet = None
|
20 |
+
|
21 |
+
def load_model(self, video_diffusion_model_list, stable_model_list):
|
22 |
+
if self.pipe is None:
|
23 |
+
if self.unet is None:
|
24 |
+
self.unet = UNet3DConditionModel.from_pretrained(
|
25 |
+
video_diffusion_model_list, subfolder="unet", torch_dtype=torch.float16
|
26 |
+
).to("cuda")
|
27 |
+
|
28 |
+
self.pipe = TuneAVideoPipeline.from_pretrained(
|
29 |
+
stable_model_list, unet=self.unet, torch_dtype=torch.float16
|
30 |
+
)
|
31 |
+
self.pipe.to("cuda")
|
32 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
33 |
+
|
34 |
+
return self.pipe
|
35 |
+
|
36 |
+
def generate_video(
|
37 |
+
self,
|
38 |
+
video_diffusion_model: str,
|
39 |
+
stable_model_list: str,
|
40 |
+
prompt: str,
|
41 |
+
negative_prompt: str,
|
42 |
+
video_length: int,
|
43 |
+
height: int,
|
44 |
+
width: int,
|
45 |
+
num_inference_steps: int,
|
46 |
+
guidance_scale: int,
|
47 |
+
fps: int,
|
48 |
+
):
|
49 |
+
pipe = self.load_model(video_diffusion_model, stable_model_list)
|
50 |
+
video = pipe(
|
51 |
+
prompt,
|
52 |
+
negative_prompt=negative_prompt,
|
53 |
+
video_length=video_length,
|
54 |
+
height=height,
|
55 |
+
width=width,
|
56 |
+
num_inference_steps=num_inference_steps,
|
57 |
+
guidance_scale=guidance_scale,
|
58 |
+
).videos
|
59 |
+
|
60 |
+
save_videos_grid(videos=video, path="output.gif", fps=fps)
|
61 |
+
return "output.gif"
|
62 |
+
|
63 |
+
def app():
|
64 |
+
with gr.Blocks():
|
65 |
+
with gr.Row():
|
66 |
+
with gr.Column():
|
67 |
+
tunevideo_video_diffusion_model_list = gr.Dropdown(
|
68 |
+
choices=video_diffusion_model_list,
|
69 |
+
label="Video Diffusion Model",
|
70 |
+
value=video_diffusion_model_list[0],
|
71 |
+
)
|
72 |
+
tunevideo_stable_model_list = gr.Dropdown(
|
73 |
+
choices=stable_model_list,
|
74 |
+
label="Stable Model List",
|
75 |
+
value=stable_model_list[0],
|
76 |
+
)
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
tunevideo_prompt = gr.Textbox(
|
80 |
+
lines=1,
|
81 |
+
placeholder="Prompt",
|
82 |
+
show_label=False,
|
83 |
+
)
|
84 |
+
tunevideo_video_length = gr.Slider(
|
85 |
+
minimum=1,
|
86 |
+
maximum=100,
|
87 |
+
step=1,
|
88 |
+
value=10,
|
89 |
+
label="Video Length",
|
90 |
+
)
|
91 |
+
tunevideo_num_inference_steps = gr.Slider(
|
92 |
+
minimum=1,
|
93 |
+
maximum=100,
|
94 |
+
step=1,
|
95 |
+
value=50,
|
96 |
+
label="Num Inference Steps",
|
97 |
+
)
|
98 |
+
tunevideo_fps = gr.Slider(
|
99 |
+
minimum=1,
|
100 |
+
maximum=60,
|
101 |
+
step=1,
|
102 |
+
value=5,
|
103 |
+
label="Fps",
|
104 |
+
)
|
105 |
+
with gr.Row():
|
106 |
+
with gr.Column():
|
107 |
+
tunevideo_negative_prompt = gr.Textbox(
|
108 |
+
lines=1,
|
109 |
+
placeholder="Negative Prompt",
|
110 |
+
show_label=False,
|
111 |
+
)
|
112 |
+
tunevideo_guidance_scale = gr.Slider(
|
113 |
+
minimum=1,
|
114 |
+
maximum=15,
|
115 |
+
step=1,
|
116 |
+
value=7.5,
|
117 |
+
label="Guidance Scale",
|
118 |
+
)
|
119 |
+
tunevideo_height = gr.Slider(
|
120 |
+
minimum=1,
|
121 |
+
maximum=1280,
|
122 |
+
step=32,
|
123 |
+
value=512,
|
124 |
+
label="Height",
|
125 |
+
)
|
126 |
+
tunevideo_width = gr.Slider(
|
127 |
+
minimum=1,
|
128 |
+
maximum=1280,
|
129 |
+
step=32,
|
130 |
+
value=512,
|
131 |
+
label="Width",
|
132 |
+
)
|
133 |
+
tunevideo_generate = gr.Button(value="Generator")
|
134 |
+
|
135 |
+
with gr.Column():
|
136 |
+
tunevideo_output = gr.Video(label="Output")
|
137 |
+
|
138 |
+
tunevideo_generate.click(
|
139 |
+
fn=TunaVideoText2VideoGenerator().generate_video,
|
140 |
+
inputs=[
|
141 |
+
tunevideo_video_diffusion_model_list,
|
142 |
+
tunevideo_stable_model_list,
|
143 |
+
tunevideo_prompt,
|
144 |
+
tunevideo_negative_prompt,
|
145 |
+
tunevideo_video_length,
|
146 |
+
tunevideo_height,
|
147 |
+
tunevideo_width,
|
148 |
+
tunevideo_num_inference_steps,
|
149 |
+
tunevideo_guidance_scale,
|
150 |
+
tunevideo_fps,
|
151 |
+
],
|
152 |
+
outputs=tunevideo_output,
|
153 |
+
)
|
video_diffusion/tuneavideo/util.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
import imageio
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
from einops import rearrange
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
|
12 |
+
def save_videos_grid(
|
13 |
+
videos: torch.Tensor, save_path: str = "output", path: str = "output.gif", rescale=False, n_rows=4, fps=3
|
14 |
+
):
|
15 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
16 |
+
outputs = []
|
17 |
+
for x in videos:
|
18 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
19 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
20 |
+
if rescale:
|
21 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
22 |
+
x = (x * 255).numpy().astype(np.uint8)
|
23 |
+
outputs.append(x)
|
24 |
+
|
25 |
+
if not os.path.exists(save_path):
|
26 |
+
os.makedirs(save_path)
|
27 |
+
|
28 |
+
imageio.mimsave(os.path.join(save_path, path), outputs, fps=fps)
|
29 |
+
return os.path.join(save_path, path)
|
30 |
+
|
31 |
+
|
32 |
+
# DDIM Inversion
|
33 |
+
@torch.no_grad()
|
34 |
+
def init_prompt(prompt, pipeline):
|
35 |
+
uncond_input = pipeline.tokenizer(
|
36 |
+
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, return_tensors="pt"
|
37 |
+
)
|
38 |
+
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
|
39 |
+
text_input = pipeline.tokenizer(
|
40 |
+
[prompt],
|
41 |
+
padding="max_length",
|
42 |
+
max_length=pipeline.tokenizer.model_max_length,
|
43 |
+
truncation=True,
|
44 |
+
return_tensors="pt",
|
45 |
+
)
|
46 |
+
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
|
47 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
48 |
+
|
49 |
+
return context
|
50 |
+
|
51 |
+
|
52 |
+
def next_step(
|
53 |
+
model_output: Union[torch.FloatTensor, np.ndarray],
|
54 |
+
timestep: int,
|
55 |
+
sample: Union[torch.FloatTensor, np.ndarray],
|
56 |
+
ddim_scheduler,
|
57 |
+
):
|
58 |
+
timestep, next_timestep = (
|
59 |
+
min(timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999),
|
60 |
+
timestep,
|
61 |
+
)
|
62 |
+
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
|
63 |
+
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
|
64 |
+
beta_prod_t = 1 - alpha_prod_t
|
65 |
+
next_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
|
66 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
67 |
+
next_sample = alpha_prod_t_next**0.5 * next_original_sample + next_sample_direction
|
68 |
+
return next_sample
|
69 |
+
|
70 |
+
|
71 |
+
def get_noise_pred_single(latents, t, context, unet):
|
72 |
+
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
|
73 |
+
return noise_pred
|
74 |
+
|
75 |
+
|
76 |
+
@torch.no_grad()
|
77 |
+
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
|
78 |
+
context = init_prompt(prompt, pipeline)
|
79 |
+
uncond_embeddings, cond_embeddings = context.chunk(2)
|
80 |
+
all_latent = [latent]
|
81 |
+
latent = latent.clone().detach()
|
82 |
+
for i in tqdm(range(num_inv_steps)):
|
83 |
+
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
|
84 |
+
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
|
85 |
+
latent = next_step(noise_pred, t, latent, ddim_scheduler)
|
86 |
+
all_latent.append(latent)
|
87 |
+
return all_latent
|
88 |
+
|
89 |
+
|
90 |
+
@torch.no_grad()
|
91 |
+
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
|
92 |
+
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
|
93 |
+
return ddim_latents
|
video_diffusion/utils/__init__.py
ADDED
File without changes
|
video_diffusion/utils/model_list.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
stable_model_list = [
|
2 |
+
"runwayml/stable-diffusion-v1-5",
|
3 |
+
"stabilityai/stable-diffusion-2-1",
|
4 |
+
# "prompthero/openjourney-v4",
|
5 |
+
"cerspense/zeroscope_v2_576w"
|
6 |
+
]
|
video_diffusion/utils/scheduler_list.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import (
|
2 |
+
DDIMScheduler,
|
3 |
+
DPMSolverMultistepScheduler,
|
4 |
+
EulerAncestralDiscreteScheduler,
|
5 |
+
EulerDiscreteScheduler,
|
6 |
+
HeunDiscreteScheduler,
|
7 |
+
LMSDiscreteScheduler,
|
8 |
+
)
|
9 |
+
|
10 |
+
diff_scheduler_list = ["DDIM", "EulerA", "Euler", "LMS", "Heun", "UniPC", "DPMSolver"]
|
11 |
+
|
12 |
+
|
13 |
+
def get_scheduler_list(pipe, scheduler):
|
14 |
+
if scheduler == diff_scheduler_list[0]:
|
15 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
16 |
+
|
17 |
+
elif scheduler == diff_scheduler_list[1]:
|
18 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
19 |
+
|
20 |
+
elif scheduler == diff_scheduler_list[2]:
|
21 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
22 |
+
|
23 |
+
elif scheduler == diff_scheduler_list[3]:
|
24 |
+
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
25 |
+
|
26 |
+
elif scheduler == diff_scheduler_list[4]:
|
27 |
+
pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
|
28 |
+
|
29 |
+
elif scheduler == diff_scheduler_list[5]:
|
30 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
31 |
+
|
32 |
+
return pipe
|
video_diffusion/zero_shot/zero_shot_text2video.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import imageio
|
3 |
+
import torch
|
4 |
+
from diffusers import TextToVideoZeroPipeline
|
5 |
+
|
6 |
+
from video_diffusion.tuneavideo.util import save_videos_grid
|
7 |
+
from video_diffusion.utils.model_list import stable_model_list
|
8 |
+
|
9 |
+
|
10 |
+
class ZeroShotText2VideoGenerator:
|
11 |
+
def __init__(self):
|
12 |
+
self.pipe = None
|
13 |
+
|
14 |
+
def load_model(self, model_id):
|
15 |
+
if self.pipe is None:
|
16 |
+
self.pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
17 |
+
self.pipe.to("cuda")
|
18 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
19 |
+
self.pipe.enable_attention_slicing()
|
20 |
+
|
21 |
+
return self.pipe
|
22 |
+
|
23 |
+
def generate_video(
|
24 |
+
self,
|
25 |
+
prompt,
|
26 |
+
negative_prompt,
|
27 |
+
model_id,
|
28 |
+
height,
|
29 |
+
width,
|
30 |
+
video_length,
|
31 |
+
guidance_scale,
|
32 |
+
fps,
|
33 |
+
t0,
|
34 |
+
t1,
|
35 |
+
motion_field_strength_x,
|
36 |
+
motion_field_strength_y,
|
37 |
+
):
|
38 |
+
pipe = self.load_model(model_id)
|
39 |
+
result = pipe(
|
40 |
+
prompt=prompt,
|
41 |
+
negative_prompt=negative_prompt,
|
42 |
+
height=height,
|
43 |
+
width=width,
|
44 |
+
video_length=video_length,
|
45 |
+
guidance_scale=guidance_scale,
|
46 |
+
t0=t0,
|
47 |
+
t1=t1,
|
48 |
+
motion_field_strength_x=motion_field_strength_x,
|
49 |
+
motion_field_strength_y=motion_field_strength_y,
|
50 |
+
).images
|
51 |
+
|
52 |
+
result = [(r * 255).astype("uint8") for r in result]
|
53 |
+
imageio.mimsave("video.mp4", result, fps=fps)
|
54 |
+
return "video.mp4"
|
55 |
+
|
56 |
+
def app():
|
57 |
+
with gr.Blocks():
|
58 |
+
with gr.Row():
|
59 |
+
with gr.Column():
|
60 |
+
zero_shot_text2video_prompt = gr.Textbox(
|
61 |
+
lines=1,
|
62 |
+
placeholder="Prompt",
|
63 |
+
show_label=False,
|
64 |
+
)
|
65 |
+
zero_shot_text2video_negative_prompt = gr.Textbox(
|
66 |
+
lines=1,
|
67 |
+
placeholder="Negative Prompt",
|
68 |
+
show_label=False,
|
69 |
+
)
|
70 |
+
zero_shot_text2video_model_id = gr.Dropdown(
|
71 |
+
choices=stable_model_list,
|
72 |
+
label="Stable Model List",
|
73 |
+
value=stable_model_list[0],
|
74 |
+
)
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
zero_shot_text2video_guidance_scale = gr.Slider(
|
78 |
+
label="Guidance Scale",
|
79 |
+
minimum=1,
|
80 |
+
maximum=15,
|
81 |
+
step=1,
|
82 |
+
value=7.5,
|
83 |
+
)
|
84 |
+
zero_shot_text2video_video_length = gr.Slider(
|
85 |
+
label="Video Length",
|
86 |
+
minimum=1,
|
87 |
+
maximum=100,
|
88 |
+
step=1,
|
89 |
+
value=10,
|
90 |
+
)
|
91 |
+
zero_shot_text2video_t0 = gr.Slider(
|
92 |
+
label="Timestep T0",
|
93 |
+
minimum=0,
|
94 |
+
maximum=100,
|
95 |
+
step=1,
|
96 |
+
value=44,
|
97 |
+
)
|
98 |
+
zero_shot_text2video_motion_field_strength_x = gr.Slider(
|
99 |
+
label="Motion Field Strength X",
|
100 |
+
minimum=0,
|
101 |
+
maximum=100,
|
102 |
+
step=1,
|
103 |
+
value=12,
|
104 |
+
)
|
105 |
+
zero_shot_text2video_fps = gr.Slider(
|
106 |
+
label="Fps",
|
107 |
+
minimum=1,
|
108 |
+
maximum=60,
|
109 |
+
step=1,
|
110 |
+
value=10,
|
111 |
+
)
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
zero_shot_text2video_height = gr.Slider(
|
115 |
+
label="Height",
|
116 |
+
minimum=128,
|
117 |
+
maximum=1280,
|
118 |
+
step=32,
|
119 |
+
value=512,
|
120 |
+
)
|
121 |
+
zero_shot_text2video_width = gr.Slider(
|
122 |
+
label="Width",
|
123 |
+
minimum=128,
|
124 |
+
maximum=1280,
|
125 |
+
step=32,
|
126 |
+
value=512,
|
127 |
+
)
|
128 |
+
zero_shot_text2video_t1 = gr.Slider(
|
129 |
+
label="Timestep T1",
|
130 |
+
minimum=0,
|
131 |
+
maximum=100,
|
132 |
+
step=1,
|
133 |
+
value=47,
|
134 |
+
)
|
135 |
+
zero_shot_text2video_motion_field_strength_y = gr.Slider(
|
136 |
+
label="Motion Field Strength Y",
|
137 |
+
minimum=0,
|
138 |
+
maximum=100,
|
139 |
+
step=1,
|
140 |
+
value=12,
|
141 |
+
)
|
142 |
+
zero_shot_text2video_button = gr.Button(value="Generator")
|
143 |
+
|
144 |
+
with gr.Column():
|
145 |
+
zero_shot_text2video_output = gr.Video(label="Output")
|
146 |
+
|
147 |
+
zero_shot_text2video_button.click(
|
148 |
+
fn=ZeroShotText2VideoGenerator().generate_video,
|
149 |
+
inputs=[
|
150 |
+
zero_shot_text2video_prompt,
|
151 |
+
zero_shot_text2video_negative_prompt,
|
152 |
+
zero_shot_text2video_model_id,
|
153 |
+
zero_shot_text2video_height,
|
154 |
+
zero_shot_text2video_width,
|
155 |
+
zero_shot_text2video_video_length,
|
156 |
+
zero_shot_text2video_guidance_scale,
|
157 |
+
zero_shot_text2video_fps,
|
158 |
+
zero_shot_text2video_t0,
|
159 |
+
zero_shot_text2video_t1,
|
160 |
+
zero_shot_text2video_motion_field_strength_x,
|
161 |
+
zero_shot_text2video_motion_field_strength_y,
|
162 |
+
],
|
163 |
+
outputs=zero_shot_text2video_output,
|
164 |
+
)
|